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Preface

Best linear unbiased prediction (BLUP) has become the most widely
accepted method for genetic evaluation of domestic livestock. Since the
method was first published by Henderson (1949), it has evolved in terms
of its application in models for genetic evaluation, from sire, sire and
maternal grandsires models in the early years, followed by univariate and
multivariate animal models, and more recently to random regression
models for the analysis of longitudinal data. Advances in computational
methods and computing power have enhanced this development. Cur-
rently, most national genetic evaluation systems for several domestic live-
stock species are based on animal or random regression models using
BLUP.

In spite of these developments and the proliferation of information in
the literature, there has been no simple and straightforward text on the
application of linear models to the prediction of breeding values. More-
over, in developing countries, where access to journals is limited, there is
a basic lack of practical information on the subject area. This book has
been written, and fully updated since the first edition was published in
1996, with a good balance of theory and application to fill this gap. It
places in the hands of the reader the application of BLUP in modelling
several genetic situations in a single text. The book has been compiled
from various publications and experience gained from several colleagues
in the subject area and from involvement in several national evaluation
schemes over the last 14 years. Relevant references are included to
indicate sources of some of the materials.

Initially, in Chapter 1, the basic model and assumptions governing
genetic evaluation are presented together with simple situations involv-
ing prediction of breeding values from the records of an individual. This
is followed by the introduction and use of selection indices to predict

xi
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genetic merit combining information on several traits and individuals.
Then the general framework on the application of BLUP in genetic evalua-
tion in a univariate and multivariate situations is presented in Chapters 3
to 5. The simplification of multivariate evaluations by means of several
transformations is also examined, followed by a multi-trait across-country
model for the analysis of dairy sires across several countries. Maternal
trait models are examined in Chapter 6. Random regression models for the
analysis of longitudinal data are discussed in Chapter 7, followed by a
chapter on incorporating genetic marker information into genetic evalua-
tions, fitting a random model. Non-additive genetic animal models are
discussed, with methods for rapidly computing the inverse of the relation-
ship matrices for dominance and epistasis effects. In Chapter 11, the
basic concepts for variance component estimation are introduced, fol-
lowed by the application of the Gibbs sampler in estimation of genetic
parameters and evaluations for univariate and multivariate models.
Finally, computing strategies for solving mixed model equations are
examined, with a presentation of the several formulae governing iterative
procedures on the data. A knowledge of basic matrix algebra is needed to
understand the principles of genetic evaluation discussed in the text. For
the benefit of those not familiar with matrix algebra, a section on intro-
ductory matrix algebra has been incorporated as Appendix A. It is also
assumed that the reader is familiar with the basic principles of quantita-
tive genetics.

Several examples have been used to illustrate the various models for
genetic evaluation covered in the text and attempts have been made to
present formulae which explain how the solutions for random and fixed
effects in the models were obtained from the mixed model equations. This
illustrates for the reader how the various pieces of information are
weighted to obtain the genetic merit of an animal under various models.

Every attempt has been made to ensure accuracy of materials in the
text. However, in the event of errors being discovered, please inform the
author.

Professor Robin Thompson contributed the chapter on estimation of
variance components, and reviewed most of the manuscript. His contri-
bution is immensely appreciated. I am greatly indebted to Professor
W.G. Hill and Mr G. Swanson for reviewing the manuscript; their
comments and suggestions resulted in substantial improvements in the
text. Drs P. Visscher, Sue Brotherstone, Victor Olori, Martin Lidauer and
Ismo Stranden read specific chapters or sections; I acknowledge their use-
ful suggestions. The assistance of Mr Mark Paget in preparing the graphs
in the text is greatly appreciated. In addition, experience gained from
working with the late Professors C. Smith and B.W. Kennedy has been
valuable in writing this book. I also wish to express my thanks to Professor
R.L. Quaas for permission to use information from his unpublished note
on the inbreeding algorithm and in addition to the Animal Genetics and
Breeding Unit, University of New England, Australia, for allowing me to
use some materials from the BLUP Handbook for Chapter 2 of the text.

xii Preface
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1 Genetic Evaluation with Different
Sources of Records

The prediction of breeding values constitutes an integral part of most
breeding programmes for genetic improvement. Crucial to the accurate
prediction of breeding value is the availability of records. In a population,
data available at the initial stages are usually on individual animals,
which may or may not be related, and later on offspring and other rela-
tives. Thus, initially, the prediction of breeding values may be based on
the records of individuals and few relatives. In this chapter the use of
individual records and information from other related sources in the pre-
diction of breeding value is addressed. Also the principles for the calcula-
tion of selection indices combining information from different sources
and relatives are discussed.

1.1 The Basic Model

Every phenotypic observation on an animal is determined by environ-
mental and genetic factors and may be defined by the following model:

Phenotypic observation = environmental effects
+ genetic effects + residual effects

or:

y g eij i i ij= + +m [1.1]

where yij is the record j of the ith animal; mi refers to the identifiable
non-random (fixed) environmental effects such as herd management, year
of birth or sex of the ith animal; gi is the sum of the additive (ga), domi-
nance (gd) and epistatic (ge) genetic values of the genotype of animal i; and
eij is the sum of random environmental effects affecting animal i.

© R.A. Mrode 2005. Linear Models for the Prediction of Animal Breeding Values,
2nd Edition (R.A. Mrode) 1
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The additive genetic value in the g term above represents the average
additive effects of genes an individual receives from both parents and is
termed the breeding value. Each parent contributes a sample half of its
genes to its progeny. The average effect of the sample half of genes which
a parent passes to its progeny is termed transmitting ability of the parent
and corresponds to one-half of its additive genetic value. The breeding
value of the progeny therefore is the sum of the transmitting abilities of
both parents. Since the additive genetic value is a function of the genes
transmitted from parents to progeny, it is the only component that can be
selected for and therefore the main component of interest. In most cases,
dominance and epistasis, which represent intra-locus and inter-loci inter-
actions, respectively, are assumed to be of little significance and are
included in the eij term of the model as:

y g eij i ai ij= + +m * [1.2]

with eij
* being the sum of the random environmental effects, dominance

and epistatic genetic values. Equation [1.2] constitutes the linear model
usually employed in most problems of breeding value prediction in animal
breeding. Usually it is assumed that y follows a multivariate normal distri-
bution, implying that traits are determined by infinitely many additive
genes of infinitesimal effect at unlinked loci, the so-called infinitesimal
model (Fisher, 1918; Bulmer, 1980). Also it is assumed that var(y), var(gai)
and var(eij

* ) are known and that there is no correlation between gai and eij
*

(cov(gai, eij
* ) = 0) nor is there any correlation among mates (cov(eij

* , eik
* ) = 0).

Also, m, which is used subsequently in this chapter to represent the mean
performance of animals in the same management group, for instance ani-
mals reared under the same management system, of the same age and sex, is
assumed known. From [1.2] the problem of predicting breeding value
reduces to that of adjusting phenotypic observations for identifiable
non-random environmental effects and appropriately weighting the
records of animals and their available relatives.

From the earlier explanation, if ai is the breeding value of animal i, then

a g a a mi ai s d i= = + +1
2

1
2

where as and ad are the breeding values of the sire and dam, respectively,
and mi is the deviation of the breeding value of animal i from the average
breeding value for both parents, that is, Mendelian sampling. The sam-
pling nature of inheritance implies that each parent passes only a sample
one-half of their genes to their progeny. There is, therefore, genetic varia-
tion between offspring of the same parents since all offspring do not
receive exactly the same genes. Mendelian sampling could be regarded as
the deviation of the average effects of additive genes an individual
receives from both parents from the average effects of genes from the
parents common to all offspring.

The accurate prediction of breeding value constitutes an important
component of any breeding programme since genetic improvement

2 Chapter 1
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through selection depends on correctly identifying individuals with the
highest true breeding value. The method employed for the prediction of
breeding value depends on the type and amount of information available
on candidates for selection. In the subsequent section prediction of breed-
ing value using different sources of information is discussed. It should be
noted that many applications of genetic evaluation deal with the predic-
tion of transmitting ability, usually referred to as predicted transmitting
ability (PTA) or estimated transmitting ability (ETA), which is one-half of
the predicted breeding value.

1.2 Breeding Value Prediction from the Animal’s Own Performance

1.2.1 Single record

When one phenotypic record is the only available information on each
animal, the estimated breeding value (ai) for animal i can be calculated as:

$ ( )a b yi i= − m [1.3]

where b is the regression of true breeding value on phenotypic perfor-
mance and m, as indicated earlier, is the mean performance of animals in
the same management group and is assumed to be known. Thus:

b a y= cov( , )/var( ) cov( , )y a a e= + /var( )y

= s a
2/s y

2

= h2

The prediction is simply the adjusted record multiplied by the
heritability (h2). The correlation between the selection criterion, in this
case the phenotypic value, and the true breeding value is known as the
accuracy of prediction. It provides a means of evaluating different selec-
tion criteria because the higher the correlation, the better the criterion as a
predictor of breeding value. In some cases, the accuracy of evaluations is
reported in terms of reliability or repeatability (r 2), which is the squared
correlation between the selection criterion and the true breeding value.
With a single record per animal, the accuracy is:

r a ya y, cov( , )= /( )s sa y

= s a
2/( )s sa y

= h

and reliability equals h2.
Expected response (R) to selection on the basis of a single record per

individual (Falconer and MacKay, 1996) is:

R ir iha y y y= =,
2 2s s

where i, the intensity of selection, refers to the superiority of selected
individuals above population average expressed in phenotypic standard
deviation.

Genetic Evaluation with Different Sources 3
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The variance of estimated breeding value (var(âi)) is:

var( $ ) var( ) var( )a by h yi = = 2

= h y
4 2s

= =r h ra y y a y a, ,
2 2 2 2 2s s [1.4]

Example 1.1
Given that the yearling weight of a heifer is 320 kg in a herd with a mean
of 250 kg, predict her breeding value and its accuracy if the heritability of
yearling weight is 0.45.

From equation [1.3]:

$ . ( ) .a = − =045 320 250 3150 kg

and:

ra y, . .= =045 067

1.2.2 Repeated records

When multiple measurements on the same trait, such as milk yield in suc-
cessive lactations, are recorded on an animal, its breeding value may be
predicted from the mean of these records. With repeated measurements it
is assumed that there is additional resemblance between records of an
individual due to environmental factors or circumstances that affect the
records of the individual permanently. In other words, there is an addi-
tional covariance between records of an individual due to non-genetic
permanent environmental effects. Thus the between-individual variance
is partly genetic and partly environmental (permanent environmental
effect). The within-individual variance is attributed to differences
between successive measurements of the individual arising from tempo-
rary environmental variations from one parity to the other. The variance
of observations (var(y)) could therefore be partitioned as:

var(y) = var(g) + var(pe) + var(te)

where var(g) = genetic variance including additive and non-additive,
var(pe) = variance due to permanent environmental effect, and var(te) =
variance due to random temporary environmental effect.

The intra-class correlation (t), which is the ratio of the between-
individual variance to the phenotypic:

t g pe y= +(var( ) var( ))/var( ) [1.5]

is usually called the repeatability and measures the correlation between
the records of an individual. From [1.5]:

var( )te /var( )y t= −1 [1.6]

4 Chapter 1
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With this model, it is usually assumed that the repeated records on
the individual measure the same trait, that is, there is a genetic correlation
of one between all pairs of records. Also it is assumed that all records have
equal variance and that the environmental correlations between all pairs
of records are equal. Let ~y represent the mean of n records on animal i.
The breeding value may be predicted as:

$ (~ )a b yi i= − m [1.7]

where:

b a y= cov( , ~)/var(~)y

Now:

cov( , ~) cov( ,a y a g pe te= + + ∑ /n a) = s 2

and:

var(~) var( ) var( ) var( )y g pe te= + + /n

Expressing the items in terms of equations [1.5] and [1.6]:

var(~) [ ( )y t t= + −1 /n y]s 2

Therefore:

b a= s 2/[ ( )t t+ −1 /n y]s 2

= nh2/[ ( ) ]1 1+ −n t

Note that b now depends on heritability, repeatability and the number of
records.

As mentioned earlier, the difference between repeated records of an
individual is assumed to be due to temporary environmental differences
between successive performances. However, if successive records are
known to be affected by factors which influence performance, these must
be corrected for. For instance, differences in age at calving in first and sec-
ond lactations may influence milk yield in first and second lactation.
Such age differences should be adjusted for before using the means of
both lactations for breeding value prediction.

The accuracy of the estimated breeding value is:

r a ya y, cov( , ~)= /( )s sa y

= s a
2/( [ ( )/ ] )s sa yt t n+ −1 2

= + −h n n t[ /( ( ) )]1 1

= + − =[ /( ( ) )]nh n t b2 1 1

Compared with single records, there is a gain in the accuracy of pre-
diction with repeated records from the above equation, which is depend-
ent on the value of repeatability and the number of records. This gain in
accuracy results mainly from the reduction in temporary environmental
variance (within individual variance) as the number of records increases.
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When t is low, this gain is substantial as the number of records increases.
When t is high, there is little gain in accuracy with repeated records com-
pared with using only single records. The gain in accuracy from repeated
records compared with selection on single records can be obtained as the
ratio of accuracy from repeated records (rn) to that from single records (rk):

r
r

h

t
t

n
h t

t
n

n

k
=

+ −

=
+ −

2

1
1
1

( )

( )

Using the above equation, the gain in accuracy from repeated records
compared with selection on single records is given in Table 1.1. The
increase in accuracy with four measurements at a low t value of 0.2 was
58% but this dropped to only 8% when t equalled 0.8. In general, the rate
of increase dropped rapidly as the number of records exceeded four, and
it is seldom necessary to record more than four measurements.

Expected response to selection on the basis of mean of repeated
records is:

R ih t t na y y= + −, [ ( )/ ]2 1s

Example 1.2
Assume that a cow has a mean yield of 8000 kg of milk for first and second
lactations. If the phenotypic standard deviation and heritability of milk
yield in the first two lactations are 600 kg and 0.30, respectively, and the
correlation between first and second lactation yields is 0.5, predict the
breeding value of the cow for milk yield in the first two lactations and its
accuracy. Assume that the herd mean for first and second lactations is
6000 kg.

From equation [1.7]:

$ ( )a bcow = −8000 6000

6 Chapter 1

Number of records

t values 2 4 6 8 10

0.2 29 58 73 83 89
0.5 15 26 31 33 35
0.8 5 8 10 10 10

Table 1.1. Percentage increase in accuracy of prediction with repeated
records compared with single records at a heritability of 0.35.
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with:

b = 2 03( . )/( ( ) . ) .1 2 1 05 04+ − =

Therefore:

$ . ( )acow = − =04 8000 6000 800 kg

and:

ra y, ~ . .= =04 0632

1.3 Breeding Value Prediction from Progeny Records

For traits where records can be obtained only on females, the prediction of
breeding values for sires is usually based on the mean of their progeny.
This is typical of the dairy cattle situation, where bulls are evaluated on
the basis of their daughters. Let y i be the mean of single records of n prog-
eny of sire i with the assumption that the progeny are only related through
the sire (paternal half-sibs), the breeding value of sire i is:

$ ( )a b yi i= − m [1.8]

where:

b a y= cov( , )/var( )y

Now:

cov( , ) cov( , / )a y a a a ns d e= + +1
2

1
2 S

where as is the sire breeding value and ad represents the breeding value
for the dams. Therefore

cov( , ) cov( , )a y a as a= =1
2

1
2

2s

Using the same principles as in Section 1.2.2:

var( ) [ ( )/ ]y t t n y= + −1 2s

assuming there is no environmental covariance between the half-sib records
and t the intra-class correlation between half-sibs is 1

4
2 2 1

4
2s sa y h/ = .

Therefore:

b t t n

h h h n

a y

y y

= + −

= + −

1
2

2 2

1
2

2 2 1
4

2 1
4

2

1

1

s s

s s

/[ ( )/ ]

/ [ ( )/ ] 2

2 2 2

2 2

2 4

2 4
2

= + −
= + −
= +

nh nh h

n n h h

n n k

/( ( ))

/( ( )/ )
/
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with:

k h h= −( )/4 2 2

The term k is constant for any assumed heritability. The weight (b)
depends on the heritability and number of progeny and approaches two as
the number of daughters increases.

The accuracy of the estimated breeding value is:

r a y a ya, cov( , )/ (var( )var( ))y =

From the above calculations, this could be expressed as

r
h

h h
h

n

h

h

a y
y

y y

,
( )

=

+
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
1
2

2 2

2 2 1
4

2
1
4

2
2

1
2

1
4

2
1

s

s s +
−

=
+ −

=
+

( )

( )

1

4

1
4

2

2

2 2

h

n

nh
nh h

n
n k

which approaches unity (one) as the number of daughters becomes large.
Reliability of the predicted breeding value therefore equals n/(n + k).

The equation for expected response when selection is based on the
mean of half-sibs is the same as that given in Section 1.2.2 for the mean of
repeated records but with t now referring to the intra-class correlation
between half-sibs.

The performance of any future daughters of the sire can be predicted
from the mean performance of the present daughters. The breeding value
of a future daughter ( $ .adaugh ) of the sire can be predicted as:

$ ( ).a b ydaugh = − m

with y and m as defined in equation [1.8] and [1.3], respectively, and:

b a y ydaugh= cov( , )/var( ).

Now:

cov( , ) cov( , / ). *a y a a a a e ndaugh s d s d= + + +1
2

1
2

1
2

1
2 S

where the subscript d* refers to the dam of the future daughter, which is
assumed to be unrelated to dams (d) of present daughters. Therefore:

cov( , ) cov( , ) cov( , ).a y a a a adaugh s s s s a= = =1
2

1
2

1
4

1
4

2s

Therefore:

b t t na y= + −1
4

2 21s s/[ ( )/ ]

8 Chapter 1
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Using the same calculations for obtaining b in [1.8]:

b = n/n + k

The b value is half of the value of b in equation [1.8]; thus the predicted
breeding value of a future daughter of the sire is equal to half the esti-
mated breeding value of the sire. The performance of a future daughter of
the sire can be predicted as:

y M adaugh= + $ .

where M is the management mean.
The accuracy of the predicted breeding value of the future daughter is:

r a y a ya y daugh, .cov( , )/ (var( )var( ))=

This could be expressed as

r
h

h h
h

n

a y
y

y y

daugh .,
( )

=

+
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
1
4

2 2

2 2 1
4

2
1
4

2
2

1

1

s

s s

4

1
4

2
1
4

2

1
2

1

h

h
h

n

n
n k

+
−

=
+

( )

which is equal to half of the accuracy of the predicted breeding value of
the sire. Reliability of the predicted breeding value equals 1/4n/(n + k),
which is one-quarter of the reliability of the bull proof.

Example 1.3
Suppose the fat yield of 25 half-sib progeny of a bull averaged 250 kg in
the first lactation. Assuming a heritability of 0.30 and herd mean of
200 kg, predict the breeding value of the bull for fat yield and its accuracy.
Also predict the performance of a future daughter of this bull for fat yield
in this herd.

From [1.8]:

$ ( )a bbull = −250 200

with:

b n n h h

abu

= + − = + − =2 4 2 25 25 4 03 03 1342 2/( ( )/ ) ( )/( ( . )/ . ) .
$ ll

a y

kg

r n n k

= − =

= + = + −

134 250 200 67

25 25 4 03

. ( )

( /( )) [ /( ( ., )/ . )] .03 082=

The future performance of the daughter of the bull is

y = (0.5)abull + herd mean
= 33.5 + 200 = 233.5 kg

Genetic Evaluation with Different Sources 9
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1.4 Breeding Value Prediction from Pedigree

When an animal has no record, its breeding value can be predicted from
the evaluations of its sire (s) and dam (d). Each parent contributes half of
its genes to their progeny; therefore the predicted breeding value of prog-
eny (o) is:

$ ( $ $ )/a a ao s d= + 2 [1.9]

Let f = (âs + âd)/2; then the accuracy of the predicted breeding value is:

r
a â â

â â
a f

o s d

a s d
o$ ,

cov( , )

var( )
=

+

+

1
2

1
2

2 1
2

1
2s

Now:

cov( , $ $ ) cov( , $ ) cov( , $ )

co

a a a a a a ao s d o s o d
1
2

1
2

1
2

1
2+ = +

= v( , $ ) cov( , $ )1
2

1
2

1
2

1
2

1
2

1
2a a a a a as d s s d d+ + +

Assuming sire and dam are unrelated:

cov( , $ $ ) cov( , $ ) cov( , $ )a a a a a a ao s d s s d d
1
2

1
2

1
4

1
4

1
4

+ = +

= var( $ ) var( $ )a as d+ 1
4

Substituting the solution for the variance of estimated breeding value in
equation [1.4]:

cov( , $ $ ) ( )a a a r ro s d s d a
1
2

1
2

1
4

2 2 2+ = + s

From the calculation above, the term var(1
2

1
2

$ $a as d+ ) in the denominator of
equation [1.9] is also equal to 1

4
2 2 2( )r rs d a+ s , assuming random mating and

the absence of joint information in the sire and dam proofs. Therefore:

r
r r

r r
ra f

s d a

a s d a

f

a
so$ ,

( )

( )
(=

+

+
= =

1
4

2 2 2

2 1
4

2 2 2

1
2

2
s

s s

s

s
+ rd

2 )

where s f s da a= +[ ( $ $ )]var 1
2

1
2 . From the above equation, the upper limit

for r when prediction is from pedigree is 1
2 2 07= . ; that is, the accuracy of

the proof of each parent is unity. Note that when the prediction is only
from the sire proof, for instance, then r r n n ka a so s$ , $ /1

2

1
2

2 1
2= = + , the

accuracy of the predicted breeding value of a future daughter of the sire as
shown in Section 1.3.

Expected response to selection on the basis of average proof of parents is:

R ira f ao
= $ , s

Substituting sf/sa for r:

R = isf

10 Chapter 1

24
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:20:36 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



Example 1.4
Suppose that the estimated breeding values for the sire and dam of a
heifer are 180 and 70 kg for yearling body weight, respectively. Given that
the accuracy of the proofs are 0.97 for the sire and 0.77 for the dam, pre-
dict the breeding value of the heifer and its accuracy for body weight at 12
months of age.

From equation [1.9]:

$ . ( )aheifer = + =05 180 70 125kg

The accuracy is:

ra a$ , . ( . . ) .= + =05 097 077 0622 2

1.5 Breeding Value Prediction for One Trait from Another

The breeding value of one trait may be predicted from the observation on
another trait if the traits are genetically correlated. If y is the observation
on animal i from one trait, its breeding value for another trait x is:

$ ( )a b yix = − m [1.10]

with:

b a y yx= cov( , )/var( )measurement on measurementon [1.11]

The genetic correlation between traits x and y (raxy) is:

r a aaxy x y ax ay= cov( , )/( )s s

Therefore:

cov( , )a a rx y axy ax ay= s s [1.12]

Substituting equation [1.12] into [1.11]:

b raxy ay ax y= s s s/ 2 [1.13]

If the additive genetic standard deviations for x and y in equation [1.13]
are expressed as the product of the square root of their individual
heritabilities and phenotypic variances, then:

b r h h

r h h
axy y x x y y

axy x y x y

=
=

s s s

s s

/

/

2

[1.14]

The weight depends on the genetic correlation between the two traits,
their heritabilities and phenotypic standard deviations.
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The accuracy of the predicted breeding value is:

r a y

r
ax ay x ax y

axy ay ax

, cov( , )/

/(

=
=

measurement on s s

s s s ax y

axy yr h

s )

=

The accuracy depends on the genetic correlation between the two traits
and heritability of the recorded trait.

Correlated response (CR) in trait x as a result of direct selection on y
(Falconer and Mckay, 1996) is:

CRx ih h rx y axy y= s

Example 1.5
Suppose the standard deviation for growth rate (GR) (g/day) to 400 days in
a population of beef cattle was 80, with a heritability of 0.43. The standard
deviation for lean growth rate (LGR) (g/day) for the same population was
32, with a heritability of 0.45. If the genetic correlation between both traits
is 0.95 and the population mean for growth rate is 887 g/day, predict the
breeding value for lean growth rate for an animal with a growth rate of
945 g/day.

Using equation [1.10]:

$ ( )a bLGR = −945 887

with:

b = cov( )/var( )GR, LGR GR

From [1.13]:

b

a

= =
=

( . ( . )( . )( ))/ .
$ . (

095 0656 0671 32 80 0167

0167 945LGR − =887 9686) .

The accuracy of the prediction is:

r = =09 043 0623. ( . ) .

1.6 Selection Index

The selection index is a method for estimating the breeding value of an ani-
mal combining all information available on the animal and its relatives. It
is the best linear prediction of an individual breeding value. The numerical
value obtained for each animal is referred to as the index (I) and it is the
basis on which animals are ranked for selection. Suppose y1, y2 and y3 are

12 Chapter 1
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phenotypic values for animal i and its sire and dam, the index for this ani-
mal using this information would be:

I a b y b y b yi i i= = − + − + −$ ( ) ( ) ( )1 1 2 2 2 3 3 3m m m [1.15]

where b1, b2, b3 are the factors by which each measurement is weighted. The
determination of the appropriate weights for the several sources of informa-
tion is the main concern of the selection index procedure. In the above
equation, the index is an estimate of the true breeding value of animal i.

Properties of a selection index are:

1. It minimizes the average square prediction error, that is, it minimizes
the average of all ( $ )a ai i− 2.
2. It maximizes the correlation (ra,â) between the true breeding value and
the index. The correlation is often called the accuracy of prediction.
3. The probability of correctly ranking pairs of animals on their breeding
value is maximized.

The b values in equation [1.15] are obtained by minimizing ( )a I− 2,
which is equivalent to maximizing raI . This is the same procedure
employed in obtaining the regression coefficients in multiple linear regres-
sion. Thus the b values could be regarded as partial regression coefficients
of the individual’s breeding value on each measurement. The minimization
results in a set of simultaneous equations similar to the normal equations of
multiple linear regression, which are solved to obtain the b values. The set
of equations to be solved for the b values is:

b p b p b p gm m1 11 2 12 1 11+ + + =L

b p b p b p gm m2 21 2 22 2 12+ + + =L

M M
b p b p b p gm m m mm m1 1 2 2 1+ + + =L [1.16]

where pmm and gmm are the phenotypic and genetic variances, respec-
tively, for individual or trait m; and pmn and gmn are the phenotypic and
genetic covariances, respectively, between individuals or traits m and n.

In matrix form, equation [1.16] is:

Pb = G

and:

b P G= −1

where P is the variance and covariance matrix for observations and G is
the covariance matrix between observations and breeding value to be
predicted.

Therefore the selection index equation is:

I a= = −−$ ( )P G y1 m [1.17]
= ′ −b y( )m [1.18]
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where m refers to estimates of environmental influences on observations,
assumed to be known without error. The application of the selection
index to some data therefore involves setting up equation [1.17]. From
equation [1.18] it is obvious that the previous methods for prediction of
breeding values discussed in Sections 1.2 to 1.5 are not different from a
selection index and they could be expressed as in equation [1.17].

1.6.1 Accuracy of index

As before, the accuracy (ra I, ) of an index is the correlation between the true
breeding value and the index. The higher the correlation, the better the
index as a predictor of breeding value. It provides a means of evaluating
different indices based on different observations, to find out, for instance,
whether a particular observation is worth including in an index or not.

From the definition above:

r a Ia I a I, cov( , )/( )= s s

First we need to calculate s I
2 and cov(a, I) in the above equation. Using the

formula for the variance of predicted breeding value in Section 1.2.1:

s I b y b y b b y y2
1 1 2 2 1 2 1 22= + + + +var( ) var( ) cov( , )L L

= + + + +b y b y b b y y1
2

1 2
2

2 1 2 1 22var( ) var( ) cov( , )L L

s I b p b p b b p2
1
2

11 2
2

22 1 2 122= + + + +L L

or in general:

s I ii
i

m

i j ij
j

m

i

m
b p b b p i j2

1
2

1 11

= + ≠
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= ==
∑ ∑∑ ;

where m is the number of traits or individuals in the index.
In matrix notation:

s I
2 = ′b Pb

Now b P G= −1 ; substituting this value for b:

s I
2 1= ′ −G P G [1.19]

The covariance between the true breeding value for trait or individual
i and index is:

cov( , ) cov( , ) cov( , ) cov( , )a I a b y a b y a b yi i i i j j= + + +1 1 2 2 L

= + + +b a y b a y b a yi i j i j1 1 2 2cov( , ) cov( , ) cov( , )L

or in general:

cov( , )a I b gi j ij
j

m
=

=
∑

1

[1.20]

where gij is the genetic covariance between traits or individuals i and j,
and m is the number of traits or individuals in the index.
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In matrix notation:

cov( , )a Ii = ′b G

Substituting P G b−1 for :

cov( , )a Ii = ′
=

−G P G1

2s I

Thus, as previously, the regression of breeding value on predicted breed-
ing values is unity. Therefore:

ra I I a I I a, /( ) /= =s s s s s2

For calculation purposes, r is better expressed as:

r

b g

a I

j ij
j

m

a
, = =

∑
1

2s
[1.21]

Response to selection on the basis of an index is:

R ira I a= , s

= i Is

1.6.2 Examples of selection indices using different sources of information

Data available on correlated traits

Example 1.6
Assume the following parameters were obtained for average daily gain
(ADG) from birth to 400 days and lean per cent (LP) at the same age in a
group of beef calves:

Heritability Standard deviation

ADG (g/day) 0.43 80.0
LP (%) 0.30 7.2

If the genetic and phenotypic correlations (rg and rp) between ADG and LP
are 0.30 and −0.10, respectively, construct an index to improve growth rate
in the beef calves. Assuming ADG as trait 1 and LP as trait 2, then, from
the given parameters:

p11
280 6400= =

p22
272 5184= =. .

p r p pp12 11 22 01 6400 5184 576= = − = −( )( ) . ( )( . ) .
p p y y a12 21 1 2

21 2 1 2 2752 1376= = = = =cov( , ) / / ( )s

g h p11
2

11 043 6400 2752= = =( ) . ( )
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g h p22
2

22 030 5184 15552= = =( ) . ( . ) .

g g r g gg12 21 11 22 62064= = =( )( ) .

The index equations to be solved are:

b

b

p p

p p

g

g
1

2

11 12

21 22

1
11

21

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

−

Inserting appropriate values gives:

b

b
1

2

1640000 5760
5760 5184

275200⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢

⎤

⎦
⎥

−. .
. .

. 0
62064.

⎡

⎣
⎢

⎤

⎦
⎥

The solutions are b1 = 0.445 and b2 = 1.692.
The index therefore is:

I = − + −0445 1692. ( ) . ( )ADG LPADG LPm m

where mADG and mLP are herd averages for ADG and LP. Using equation
[1.21]:

r = + =[( . ( ) . ( . ))/ ] .0445 2752 1692 62064 2752 0695

Using single records on individual and relatives

Example 1.7
Suppose the average daily gain (ADG) for a bull calf (y1) is 900 g/day and
the ADG for his sire (y2) and dam (y3) are 800 g/day and 450 g/day, respec-
tively. Assuming all observations were obtained in the same herd and
using the same parameters as in Example 1.6, predict the breeding value
of the bull calf for ADG and its accuracy.

From the parameters given:

p p p y11 22 33
2 6400= = = =s

p p y y a12 21 1 2
1
2

2 1
2 2752 1376= = = = =cov( , ) ( )s

p p13 12 1376= =
p23 0=
g a11

2 2752= =s

g g a12 13
1
2

2 1376= = =s

The index equations are:

b

b

b

1

2

3

6400 1376 1376
1376 6400 0000
1376 0000 6

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
400

2752
1376
1376

1⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

Solutions to the above equations are b1 = 0.372, b2 = 0.135 and b3 = 0.135.
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The index is:

I = − + − + −0372 900 0135 800 0135 450. ( ) . ( ) . ( )m m m

where m is the herd average. The accuracy is:

r = + + =[( . ( ) . ( ) . ( ))/ ] .0372 2752 0135 176 0135 176 2752 0712

The high accuracy is due to the inclusion of information from both
parents.

Using means of records from animal and relatives

Example 1.8
It is given that average protein yield for the first two lactations for a cow
(~ )y 1 called Zena is 230 kg and the mean protein yield of five other cows
(~ )y 2 , each with two lactations, is 300 kg, if all cows are all daughters of the
same bull and no other relationship exists among them, predict the breed-
ing value of Zena, assuming a heritability of 0.25, a repeatability (t) of 0.5,
standard deviation of 34 kg and herd average of 250 kg for protein yield in
the first two lactations.

From the given parameters:

g ha y11
2 2 2 2025 34 289= = = =s s . ( )

and:

g12 = covariance between half-sibs = = =1
4

2 1
4 289 7225( ) ( ) .s a

From calculations in Section 1.2.2:

p y t
t

n
y11 1
21= = + −⎛

⎝⎜
⎞
⎠⎟

var(~ )
( )

s

= + − =( . ( . )/ )05 1 05 2 34 8672

Using similar arguments:

p y nB W22 2
2 21= = +var(~ ) / ( )s s

where s B
2 is the between-cow variance and 1 2/ ( )n Ws is the mean of the

within-cow variance. From Section 1.3, since cows are half-sibs:

s sB a
2 1

4
2=

and for cow i in the group of five cows:

s sW i By2
2

2= −var(~ )

where ~y i2 is the mean of the first two lactations for cow i. Since all five
cows each have two records like Zena, var (~ )y Pi2 11= , therefore:

s sW ap2
11

1
4

2= −( )
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and:

1 1 11
1
4

2/ ( ) / ( )n n pW as s2 = −

Therefore:
p n pa a22

1
4

2
11

1
4

21= + −s s/ ( )
= + − =1

4
1
5

1
4289 867 289 2312( ) ( )( ( )) .

The index equations are:

b

b
1

2

1867 7225
7225 2312

289
7225

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤−.
. . . ⎦

⎥

The solutions are b1 = 0.316 and b2 = 0.213 and the index is:

I = − + −0316 230 250 0213 300 250. ( ) . ( )

The accuracy of the index is:

r = + =[( . ( ) . ( . )) / ] .0316 289 0213 725 289 0608

1.6.3 Prediction of aggregate genotype

At times, the aim is to predict not just the breeding value of a single trait
but that of a composite of several traits evaluated in economic terms.
The aggregate breeding value (H) or merit for such several traits can be
represented as:

H w a w a w am m= + + +1 1 2 2 L

where ai is the breeding value of the ith trait and wi the weighting factor
which expresses the relative economic importance associated with the ith
trait. The construction of an index to predict or improve H is based on the
same principles as those discussed earlier except that it includes the rela-
tive economic weight for each trait.

Thus

I = −−P Gw y1 ( )m [1.22]

where w is the vector of economic weights and all other terms are as
defined in [1.17]. The equations to be solved to get the weights (b values)
to be used in the index are:

b p b p b p w g w g w gm m m m1 11 2 12 1 1 11 2 12 1+ + + = + + +L L

b p b p b p w g w g w gm m m m2 21 2 22 2 1 12 2 12 2+ + + = + + +L L

M M M
b p b p b p w g w g w gm m m mm m m m mm1 1 2 2 1 1 2 2+ + + = + + +L L

In matrix notation these equations are:

Pb = Gw

b P Gw= −1

18 Chapter 1
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It should be noted that it is possible that there are some traits in the
index which are not in the aggregate breeding value but may be correlated
with other traits in H. Conversely, some traits in the aggregate breeding
value may be difficult to measure or occur late in life and therefore may
not be in the index. Such traits may be replaced in the index with other
highly correlated traits which are easily measurable or occur early in life.
Consequently the vector of economic weights may not necessarily be of
the same dimension as traits in the index, as indicated in the equations for
b above. Each trait in the index is weighted by the economic weight rele-
vant to the breeding value of the trait it is predicting in the aggregate
breeding value.

The index calculated using [1.22] implies that the same economic
weights are applied to the traits in the aggregate genotype across the whole
population. A change in the economic weight for one of the traits would
imply recalculating the index. An alternative formulation of [1.22] involves
calculating a sub-index for each trait in H without the economic weights.
The final index [1.23] is obtained by summing the sub-indices for each trait
weighted by their respective economic weights. Thus:

I I wi i
i

m
=

=
∑

1

[1.23]

where I i i= −−P G y1 ( )m , the sub-index for trait i in H and wi = economic
weight for trait i.

With [1.23], a change in the economic weights of any of the traits in
the index can easily be implemented without recalculating the index.

To demonstrate that [1.22] and [1.23] are equivalent, assume that
there are two traits in H; then [1.23] becomes:

I I w I w= +1 1 2 2

= − + −− −P G y P G y1
1 1

1
2 2w w( ) ( )m m

where Gi is the covariance matrix between trait i and all traits in the
index. Thus:

I w w= + −−P G G y1
1 1 2 2( )( )m

= −−P Gw y1 ( )m

which is the same as [1.22].

Example 1.9
Assume the economic weights for ADG and LP are £1.5 and £0.5 per each
increase of 1 kg in ADG and 1% increase in LP, respectively. Using the
genetic parameters in Example 1.6, construct an index to select fast-
growing lean beef calves using equation [1.22]. Repeat the analysis using
equation [1.23].

Using [1.22], index equations are:

b

b

p p

p p

w g w g

w g w
1

2

11 12

21 22

1
1 11 2 12

1 21 2

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

+
+

−

g 22

⎡

⎣
⎢

⎤

⎦
⎥
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Inserting the appropriate values:

b

b
1

2

1640000 5760
5760 5184

15 275⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢

⎤

⎦
⎥

−. .
. .

. ( 2 05 62064
15 62064 05 15552

) . ( . )
. ( . ) . ( . )

+
+

⎡

⎣
⎢

⎤

⎦
⎥

Solutions for b1 and b2 from the above equations are 0.674 and 2.695,
respectively. The index therefore is:

I = − + −0674 2694. ( ) . ( )ADG LPADG LPm m

Applying equation [1.23], the sub-index for ADG is the same as that calcu-
lated in Example 1.6, with b1 = 0.445 and b2 = 1.692. The sub-index for LP is:

b p b p g1 11 2 12 12+ =
b p b p g1 21 2 22 22+ =

which gives:

b

b
1

2

1640000 5760
5760 5184

62064
1

⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢

⎤

⎦
⎥

−. .
. .

.
5552.

⎡

⎣
⎢

⎤

⎦
⎥

The solutions are b1 = 0.0125 and b2 = 0.314. Multiplying the sub-indices
by their respective weights gives:

IADG ADG LPADG LP= − + −0445 15 1692 15. ( . )( ) . ( . )( )m m

= − + −0668 2538. ( ) . ( )ADG LPADG LPm m

and:

I LP ADG LPADG LP= − + −00125 05 0314 05. ( . )( ) . ( . )( )m m

= − + −0006 0157. ( ) . ( )ADG LPADG LPm m

Summing the b terms from the two sub-indices, the final b terms are:

b1 = 0.668 + 0.006 = 0.674
b2 = 2.538 + 0.157 = 2.695

Therefore the final index is:

I = − + −0675 2695. ( ) . ( )ADG LPADG LPm m

which is the same as that calculated using equation [1.22].

1.6.4 Overall economic indices using predicted genetic merit

Overall economic indices that combine PTAs or estimated breeding values
(BVs) calculated by best linear unbiased prediction (BLUP, see Chapter 3)
have become very popular in the last decade. In addition to the recogni-
tion that more than one trait contributes to profitability, the broadening of
selection goals has also been due to the need to incorporate health and
welfare traits to accommodate public concerns. Examples of indices con-
structed with PTAs or BVs of several traits and used in genetic improve-
ment of dairy cattle include production index (PIN), combining PTAs for

20 Chapter 1
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milk, fat and protein, and profitable life index (PLI), which is PIN plus
PTAs for longevity and somatic cell count, in the UK; and, in The Nether-
lands, net profit index for milk (INET), which combines BVs for milk, fat
and protein, and durable performance sum (DPS), which is INET plus
durability (Interbull, 2000). The principles for calculating these indices
are similar to those outlined in previous sections. Given that the PTAs or
BVs are from a complete multivariate analysis, the optimal index weights
(b) are the sum of the partial regression coefficients of each goal trait on
each index trait, weighted by the economic value of the goal trait
(Veerkamp et al., 1995). Thus, given m traits in the selection goal and n
traits in the index, the partial regressions can be calculated as:

R G G= −1
ig

and:

b Rw=

where R is a matrix of partial genetic regression, Gig is the matrix of
genetic covariance between m goal and n index traits, G is the genetic
covariance matrix between the index traits, and w is the vector of eco-
nomic weights. It is obvious that when goal and index traits are the same,
Gig = G and b = w. In the case where the index and goal traits are not the
same, R can be estimated directly from a regression of phenotype on the
estimated breeding values for the index traits (Brotherstone and Hill,
1991). However, if PTAs or BVs are from a univariate analysis, rather than
from a multivariate analysis, the use of b above results only in minimal
loss of efficiency in the index (Veerkamp et al., 1995).

Selection based on breeding values from BLUP is usually associated
with an increased rate of inbreeding as it favours the selection of closely
related individuals. Quadratic indices can be used to optimize the rate of
genetic gain and inbreeding. This does not fall within the main subject
area of this text and interested readers should see the work by Meuwissen
(1997) and Grundy et al. (1998).

1.6.5 Restricted selection index

Restricted selection index is used when the aim is to maximize selection
for a given aggregate genotype, subject to the restriction that no genetic
change is desired in one or more of the traits in the index for H. This is
achieved by the usual index procedure and setting the covariance
between the index and the breeding value (cov(I, ai)) for the ith trait speci-
fied not to change to zero. It was Kempthorne and Nordskog (1959) who
introduced the idea of imposing restrictions on the general index
procedure.

For instance, consider the aggregate genotype composed of two
traits:

H w a w a= +1 1 2 2

Genetic Evaluation with Different Sources 21
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However, it is desired that there should be no genetic change in trait 2;
thus effectively:

H = w1a1

and the index to predict H is:

I = b1y1 + b2y2

To ensure that there is no genetic change in trait 2, cov(I, a2) must be equal
to zero. From equation [1.20]:

cov(I, a2) = b1g12 + b2g22 = 0

This is included as an extra equation to the normal equations for the b
values, and a dummy unknown, the so-called Lagrange multiplier, is
added to the vector of solutions for the index weights (Ronningen and
Van Vleck, 1985). The equations for the index therefore are:

b

b

p p g

p p g

g g

1

2

11 12 12

21 22 22

12 22 0l

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1
11

12

0

g

g [1.24]

Example 1.10
Using the same data and parameters as in Example 1.6, construct an index
to improve the aggregate genotype for fast-growing lean cattle using an
index consisting of growth rate and lean per cent but with no genetic
change in lean per cent.

From [1.24], the index equations are:

6400000 57600 62064
57600 51800 15552
62064 1555

. . .

. . .

. .

−

2 0000

1

2

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

b

b

l

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2752000
62064

0000

.

.

.

The solutions for b1 and b2 from solving the above equations are 0.325 and
�1.303. Therefore the index is:

I = − + − −0325 1303. ( ) ( . ( ))ADG LPADG LPm m

The accuracy of this index (equation [1.21]) is

r = + − =( . ( ) ( . ( . )))/ .0325 2752 1303 62064 2752 0544

which is lower than the accuracy for the equivalent index in Example 1.6,
but with no restriction on LP, and is also lower than the accuracy of pre-
diction of breeding value for ADG on the basis of single records. The
imposition of a restriction on any trait in the index will never increase the
efficiency of the index but usually reduces it unless Ii = 0 for the con-
strained trait.

22 Chapter 1
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1.6.6 Index combining breeding values from phenotype and genetic marker
information

Consider a situation in which one or more genes affecting a trait with a
large impact on profit have been identified to be linked to a genetic
marker (see Chapter 8). If genetic prediction based only on marker infor-
mation is available in addition to the conventional BV estimated without
marker information, then both sources of information can be combined
into an index (Goddard, 1999). It is also possible that the conventional BV
is based on a subset of traits in the breeding goal and marker information
is available on other traits that are not routinely measured, such as meat
quality traits.

A selection index could be used to combine both sources of informa-
tion and the increase in accuracy from including marker information
could be computed (Goddard, 1999). Given r as the accuracy of the con-
ventional breeding BV and d as the proportion of genetic variance
explained by the marker information, then the covariance between the
two sources of information is dr 2. If m is the BV based on marker informa-
tion and a the BV from phenotypic information, then:

var
m

a
d dr

dr r
⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟

2

2 2

Let g be the true breeding value to be predicted, then cov(g, m) = d and
cov(g, a) = r 2. The normal index equations are:

b

b
d dr

dr r

d

r
2

2

2

2 2

1

2

⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

−

Solving the above equations gives the following index weights:

b r dr b d dr1
2 2

2
21 1 1 1= − − = − −/( ) /( )and

The variance of the index = reliability rI
2 is:

r r d d r drI
2 2 2 21 1 1= − + − −[( ) ( ) ]/( )

The increase in reliability (rinc
2 ) from incorporating marker information

therefore is:

r r r d dr rinc I
2 2 2 2 2 21 1= − = − −( ) /( )[( ) ]

For example, given that r2 of the conventional BV is 0.34 and marker
information accounts for 25% of the genetic variance, then rI

2 is 0.49, an
increase in reliability of 0.15. However, if r 2 is 0.81, then rI

2 is 0.83 and
rinc

2 is only 0.02. Thus the usefulness of marker information is greater
when reliability is low, such as in traits of low heritability and also traits
which cannot be measured in young animals, such as carcass traits
(Goddard, 1999).
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2 Genetic Covariance Between
Relatives

Of fundamental importance in the prediction of breeding values is the
genetic relationship among individuals. From Chapter 1, it is noticed that
the use of the selection index to predict breeding values requires genetic
covariance between individuals to construct the genetic covariance
matrix. Genetic evaluation using best linear unbiased prediction (BLUP),
the subject of the next chapter, is heavily dependent on the genetic
covariance among individuals, both for higher accuracy and for unbiased
results. The genetic covariance among individuals is comprised of three
components: the additive genetic variance, the dominance variance and
the epistatic variance. This chapter addresses the calculation of the addi-
tive genetic relationship among individuals and how to determine the
level of inbreeding. Dominance and epistasis genetic relationships are
considered in Chapter 9, which deals with non-additive models.

2.1 The Numerator Relationship Matrix

The probability of identical genes by descent occurring in two individuals
is termed the coancestry or the coefficient of kinship (Falconer and
MacKay, 1996) and the additive genetic relationship between two indi-
viduals is twice their coancestry. The matrix which indicates the additive
genetic relationship among individuals is called the numerator relation-
ship matrix (A). It is symmetric and its diagonal element for animal i (aii)
is equal to 1 + Fi, where Fi is the inbreeding coefficient of animal i
(Wright, 1922). The diagonal element represents twice the probability that
two gametes taken at random from animal i will carry identical alleles by
descent. The off-diagonal element, aij, equals the numerator of the coeffi-
cient of relationship (Wright, 1922) between animals i and j. When
multiplied by the additive genetic variance (su

2), Asu
2 is the covariance

among breeding values. Thus if ui is the breeding value for animal i,

© R.A. Mrode 2005. Linear Models for the Prediction of Animal Breeding Values,
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var(ui) = aiisu
2 = (1 + Fi)su

2. The matrix A can be computed using path
coefficients but a recursive method which is suitable for computerization
was described by Henderson (1976). Initially, animals in the pedigree are
coded 1 to n and ordered such that parents precede their progeny. The
following rules are then employed to compute A.

If both parents (s and d) of animal i are known:

aji = aij = 0.5(ajs + ajd); j = 1 to (i − 1)
aii = 1 + 0.5(asd)

If only one parent s is known and assumed unrelated to the mate:

aji = aij = 0.5(ajs); j = 1 to (i − 1)
aii = 1

If both parents are unknown and are assumed unrelated:

aji = aij = 0; j = 1 to (i − 1)
aii = 1

For example, assume that the data in Table 2.1 are the pedigree for
six animals. The numerator relationship matrix for the example pedigree
is:

1 2 3 4 5 6

1 1.00 0.0 0.50 0.50 0.50 0.25
2 0.00 1.0 0.50 0.00 0.25 0.625
3 0.50 0.50 1.00 0.25 0.625 0.563
4 0.50 0.00 0.25 1.00 0.625 0.313
5 0.50 0.25 0.625 0.625 1.125 0.688
6 0.25 0.625 0.563 0.313 0.688 1.125

For instance:

a11 = 1 + 0 = 1
a12 = 0.5(0 + 0) = 0 = a21
a22 = 1 + 0 = 1
a13 = 0.5(a11 + a12) = 0.5(1.0 + 0) = 0.5 = a31
a23 = 0.5(a12 + a22) = 0.5(0 + 1.0) = 0.5 = a32
M
a34 = 0.5(a13) = 0.5(0.5 + 0) = 0.25 = a43
M
a66 = 1 + 0.5(a52) = 1 + 0.5(0.25) = 1.125

From the above calculation, the inbreeding coefficient for calf 6 is 0.125.

26 Chapter 2
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Genetic Covariance Between Relatives 27

2.2 Decomposing the Relationship Matrix

The relationship matrix can be expressed (Thompson, 1977a) as:

A = TDT¢ [2.1]

where T is a lower triangular matrix and D is a diagonal matrix. This rela-
tionship has been used to develop rules for obtaining the inverse of A. A
non-zero element of the matrix T, say tij, is the coefficient of relationship
between animals i and j, if i and j are direct relatives or i = j and it is
assumed that there is no inbreeding. Thus the matrix T traces the flow of
genes from one generation to the other; in other words, it accounts only
for direct (parent–offspring) relationships. It can easily be computed
applying the following rules.

For the ith animal:

tii = 1

If both parents (s and d) are known:

tij = 0.5(tsj + tdj)

If only one parent (s) is known:

tij = 0.5(tsj)

If neither parent is known:

tij = 0

The variance of the diagonal matrix D is the variance and covariance
matrix for Mendelian sampling. The Mendelian sampling (m) for an ani-
mal i with breeding value ui and us and ud as breeding values for its sire
and dam, respectively, is:

mi = ui – 0.5(us + ud) [2.2]

D has a simple structure and can easily be calculated. From [2.2], if both
parents of animal i are known, then:

var(mi) = var(ui) – var(0.5us + 0.5ud)
= var(ui) – var(0.5us) – var(0.5ud) + 2cov(0.5us, 0.5ud)
= (1 + Fi)su

2 – 0.25ass su
2 – 0.25add su

2 – 0.5asd su
2

where ass, add and asd are elements of the relationship matrix A and Fi is
the inbreeding coefficient of animal i.

Calf Sire Dam

3 1 2
4 1 Unknown
5 4 3
6 5 2

Table 2.1. Pedigree for six animals.
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var(mi)/su
2 = dii = (1 + Fi) – 0.25ass – 0.25add – 0.5asd

Since Fi = 0.5asd:

dii = 1 – 0.25(1 + Fs) – 0.25(1 + Fd)
= 0.5 – 0.25(Fs + Fd)

where Fs and Fd are the inbreeding coefficients of animal i’s sire and dam,
respectively. If only one parent (s) is known, the diagonal element is:

dii = 1 – 0.25(1 + Fs)
= 0.75 – 0.25(Fs)

and if no parent is known:

dii = 1

For the pedigree in Table 2.1, the matrix T is:

1 2 3 4 5 6

1 1.0 0.0 0.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0 0.0 0.0
3 0.5 0.5 1.0 0.0 0.0 0.0
4 0.5 0.0 0.0 1.0 0.0 0.0
5 0.5 0.25 0.5 0.5 1.0 0.0
6 0.25 0.625 0.25 0.25 0.5 1.0

and D is:

D = diag(1.0, 1.0, 0.5, 0.75, 0.5, 0.469)

For instance, animal 3 has only the sire known, which is not inbred;
therefore:

d33 = 0.75 – 0 = 0.75

and:

d66 = 0.5 – 0.25(0.125 + 0) = 0.469

because both parents are known and the sire has an inbreeding coefficient
of 0.125.

2.3 Computing the Inverse of the Relationship Matrix

The prediction of breeding value requires the inverse of the relationship
matrix, A−1. This could be obtained by setting up A by the recursive
method and inverting it. This, however, is not computationally feasible
when evaluating a large number of animals. In 1976, Henderson presented

28 Chapter 2

42
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:20:46 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



a simple procedure for calculating A−1 without setting up A. The proce-
dure and its principles are described below.

From equation [2.1], the inverse of A can be written as:

A−1 = (T−1)′D−1T−1 [2.3]

The matrix D−1 is easy to obtain because D is a diagonal matrix. The
diagonal elements of D−1 are simply the reciprocals of the diagonal ele-
ments of D computed in Section 2.2. T−1 is a lower triangular matrix with
ones in the diagonal, and the only non-zero elements to the left of the
diagonal in the row for the animal i are −0.5 for columns corresponding to
the known parents. It can be derived as I − M, where I is an identity matrix
of the order of animals on the pedigree and M is a matrix of the contribu-
tion of gametes from parents to progeny (Kennedy, 1989). Since progeny i
receives half of its genes from each parent, the only non-zero elements in
row i of M are 0.5 corresponding to columns of known parents. Thus, if
both parents of progeny i are unknown, all elements of row i are zero. For
the pedigree in Table 2.1, T−1 can be calculated as:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

−

( )I

00 00 00 00 00 00
00 00 00 00 00 00
05 05

. . . . . .

. . . . . .

. . 00 00 00 00
05 00 00 00 00 00
00 00 05 05 00 00
0

. . . .
. . . . . .
. . . . . .
.0 05 00 00 05 00. . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

( )M

=
−

10 00 00 00 00 00
00 10 00 00 00 00
05 00 10 00

. . . . . .

. . . . . .

. . . . 00 00
05 05 00 10 00 00
00 00 05 05 10 00
00

. .
. . . . . .
. . . . . .
.

− −
− −

−05 00 00 05 10. . . . .
( )

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

T�1

and:

D−1 = diag(1, 1, 2, 1.333, 2, 2.133)

2.3.1 Inverse of the numerator relationship matrix ignoring inbreeding

The relation shown in equation [2.3] was used by Henderson (1976) to
derive simple rules for obtaining A−1 without accounting for inbreeding.
With inbreeding ignored, the diagonal elements of D−1 are either 2 or 4

3 or 1
if both or one or no parents are known, respectively. Let ai represent the
diagonal element of D−1 for animal i. Initially set A−1 to zero and apply
the following rules.

Genetic Covariance Between Relatives 29

43
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:20:47 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



If both parents of the ith animal are known, add:

ai to the (i,i) element
−ai/2 to the (s,i), (i,s), (d,i) and (i,d) elements
ai/4 to the (s,s), (s,d), (d,s) and (d,d) elements

If only one parent (s) of the ith animal is known, add:

ai to the (i,i) element
−ai/2 to the (s,i) and (i,s) elements
ai/4 to the (s,s) element

If neither parent of the ith animal is known, add:

ai to the (i,i) element

As an illustration, the inverse of the relationship matrix in Section 2.1
can be calculated as below. Initially, list all animals in the pedigree:

Calf Sire Dam

1 Unknown Unknown
2 Unknown Unknown
3 1 2
4 1 Unknown
5 4 3
6 5 2

Then set up a 6 � 6 table for the animals. For animals 1 and 2, both
parents are unknown; therefore a1 = a2 = 1. Add 1 to their diagonal elements
(1,1 and 2,2). For animal 3, both parents are known; therefore a3 = 2. Add 2
to the 3,3 element, −1 to the (3,1), (1,3), (3,2) and (2,3) elements and 1

2 to the
(1,1), (1,2), (2,1) and (2,2) elements. For animal 4, only one parent is known;
therefore a4 = 4

3. Add 4
3 to the (4,4) element, − 2

3 to the (4,1) and (1,4)
elements and 1

3 to the (1,1) element. After the first four animals, the table is:

1 2 3 4 5 6

1 1 1
2

1
3

+ + 1
2

−1 − 2
3

2 1
2

1 1
2

+ −1

3 −1 −1 2

4 − 2
3

4
3

5

6

30 Chapter 2

44
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:20:47 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



After applying the relevant rules to animals 5 and 6, the inverse of A
then is:

1 2 3 4 5 6

1 1.83 0.5 −1.0 −0.667 0.0 0.0
2 0.5 2.0 −1.0 0.0 0.5 −1.0
3 −1.0 −1.0 2.50 0.5 −1.0 0.0
4 −0.67 0.0 0.5 1.833 −1.0 0.0
5 0.0 0.5 −1.0 −1.0 2.50 −1.0
6 0.0 −1.0 0.0 0.0 −1.0 2.0

Using equation [2.3], the inverse of A can be calculated directly. If
inbreeding is ignored, D for the pedigree is:

D = diag(1.0, 1.0, 0.5, 0.75, 0.5, 0.5)

and:

D−1 = diag(1, 1, 2, 1.33, 2, 2)

Therefore the inverse of the relationship matrix using [2.3] is:

( )

. . . . . .

. . . . . .

.

T− ′

− −
− −

1

10 00 05 05 00 00
00 10 05 00 00 05
00 0. . . . .
. . . . . .
. . . . .

0 10 00 05 00
00 00 00 10 05 00
00 00 00 00 10

−
−

−05
00 00 00 00 00 10

100 000 000

1

.
. . . . . .

. . .⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

−D

000 000 000
000 100 000 000 000 000
000 000 200 0

. . .
. . . . . .
. . . .00 000 000

000 000 000 133 000 000
000 000 000 000

. .
. . . . . .
. . . . 200 000

000 000 000 000 000 200
. .

. . . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

( )

. . . . . .

. . . . . .

. . .

T−

−

1

10 00 00 00 00 00
00 10 00 00 00 00
05 00 10 00 00 00
05 05 00 10 00 00
00 00 05 05 10 00

. . .
. . . . . .
. . . . . .

− −
− −

00 05 00 00 05 10. . . . . .− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

− −
−

−A 1

183 050 100 067 000 000
050 200 100 000 05
. . . . . .
. . . . . 0 100

100 100 250 050 100 000
067 000 050 183

−
− − −
−

.
. . . . . .
. . . . −

− − −
−

100 000
000 050 100 100 250 100
000 100 000 0

. .
. . . . . .
. . . . . .00 100 200−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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which is the same inverse as that obtained previously by applying the
rules.

2.3.2 Inverse of the numerator relationship matrix accounting for inbreeding

The calculation of A−1 with inbreeding accounted for involves the appli-
cation of the same rules outlined in Section 2.3.1 but D and therefore D−1

in equation [2.3] are calculated using the inbreeding coefficients of sires
and dams (see Section 2.2). This implies that the diagonal elements of the
relationship matrix are needed for A−1 to be properly calculated. This
could be achieved by initially calculating the A for the group of animals
and writing the diagonal elements to a file. The diagonal elements could
be read from the file while computing A−1. For a large pedigree, this
approach would require a large amount of memory for storage and be
computationally demanding. However, Quaas (1976) presented a strategy
for obtaining the diagonal elements of A while computing A−1 without
setting up the relationship matrix.

Recall from Section 2.2 that A can be expressed as:

A = TDT¢

If L = T D :

A = LL¢ [2.4]

where L is a lower triangular matrix and, since D is diagonal, D refers to
a matrix obtained by calculating the square root of the diagonal elements
of D. Equation [2.4] implies that the diagonal element of A for animal i is:

a lii im
m

i
=

=
∑ 2

1

[2.5]

Thus for a pedigree consisting of m animals:

a l

a l l

a l l l

a l lmm m

11 11
2

22 21
2

22
2

33 31
2

32
2

33
2

1
2

=

= +

= + +

= +
M

m m mml l2
2

3
2 2+ + +L

From the above all the diagonal elements of A can be computed by calcu-
lating L one column at a time (Quaas, 1984). Only two vectors of dimen-
sion equal to the number of animals for storage will be required, one to
store the column of L being computed and the second to accumulate the
sum of squares of the elements of L for each animal. The matrices L and
A−1 can be computed using the following procedure.
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From equation [2.4] the diagonal element of L for animal i is:

l d

l F F

l a a

ii i

ii s d

ii ss dd

=

= − +

= − +

[ . . ( )]

[ . . ( )]

05 025

10 025 ; with anda F a Fss ss dd dd= + = +1 1

Using equation [2.5]:

l l lii sm dm
m

d

m

s
= − +

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥==

∑∑10 025 2 2

11

. .

To set up A−1 at the same time, calculate the diagonal element of D−1(ai) for
animal i as ai = 1/l ii

2 . Then compute the contribution of animal i to A−1,
applying the usual rules for computing A−1 (see Section 2.3.1).

The off-diagonal elements of L to the left of the diagonal for animal i
are calculated as:

lij = 0.5(lsj + ldj); s and d equal to or greater than j

For the example pedigree used in Section 2.3.1, the L matrix is:

1 2 3 4 5 6

1 1.0 0.0 0.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0 0.0 0.0
3 0.5 0.5 0.707 0.0 0.0 0.0
4 0.5 0.0 0.0 0.866 0.0 0.0
5 0.5 0.25 0.354 0.433 0.707 0.0
6 0.25 0.625 0.177 0.217 0.354 0.685

and A−1 with inbreeding accounted for is:

1 2 3 4 5 6

1 1.833 0.5 −1.0 −0.667 0.0 0.0
2 0.5 2.033 −1.0 0.0 0.533 −1.067
3 −1.0 −1.0 2.50 0.5 −1.0 0.0
4 −0.667 0.0 0.5 1.833 −1.0 0.0
5 0.0 0.533 −1.0 −1.0 2.533 −1.067
6 0.0 1.067 0.0 0.0 −1.067 2.133
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The calculation columns of L and ai for the first three animals are
illustrated below:

l11 1 025 0 0 1= − + =[ . ( )]
a1 = 1 and its contribution to A−1 is computed using the rules in

Section 2.3.1
l21 = 0
l31 = 0.5(l11 + l21) = 0.5(1 + 0) = 0.5
l41 = 0.5(l11) = 0.5
l51 = 0.5(l41 + l31) = 0.5(0.5 + 0.5) = 0.5
l61 = 0.5(l51 + l21) = 0.5(0.5 + 0) = 0.25

l22 1 025 0 0 1= − + =[ . ( )]
a2 = 1 and its contribution to A−1 is computed using the rules in

Section 2.3.1
l32 = 0.5(l12 + l22) = 0.5(0 + 1) = 0.5
l42 = 0.5(l12) = 0.5(0) = 0
l52 = 0.5(l42 + l32) = 0.5(0 + 0.5) = 0.25
l62 = 0.5(l52 + l22) = 0.5(0.25 + 1.0) = 0.625

l l l l33 11
2

21
2

22
21 025 025= − − +[ . ( ) . ( )]

= − − + =[ . ( ) . ( )] .1 025 1 025 0 1 0707

a3 = 1/(0.707)2 = 2.0 and its contribution to A−1 is computed using
the usual rules

l43 = 0.5(l13) = 0.5(0) = 0
l53 = 0.5(l43 + l33) = 0.5(0 + 0.707) = 0.354
l63 = 0.5(l53 + l23) = 0.5(0.354 + 0) = 0.177

Faster algorithms for computing the inverse of A accounting for
inbreeding based on the L matrix have been published by Meuwissen and
Luo (1992) and Quaas (1995), and these are presented in Appendix B.

2.4 Inverse of the Relationship Matrix for Sires and
Maternal Grandsires

In some cases, the prediction of breeding value is only for sires and mater-
nal grandsires, the so-called sire and maternal grandsire (MGS) model. In
such cases, the A−1 to be incorporated in the mixed model equations
(MME) involves only sire and maternal grandsires and the rules for calcu-
lating A−1 are different from those discussed in the previous sections
relating to pedigrees with individuals, sires and dams. With the MGS
model, the relationship matrix A required pertains to males and can be
approximated (Quaas, 1984) as:

aii = 1 + 0.25ask [2.6]
aij = 0.5asj + 0.25akj [2.7]
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where s and k are the sires and maternal grandsires, respectively, for sire i.
When all maternal grandams are unrelated (base animals) and there are no
maternal half-sibs, the above will yield the exact A.

The inverse of approximate A can be calculated from a list of sires and
maternal grandsires, applying equation [2.6]. In this case, T−1 is a lower tri-
angular matrix with ones in the diagonal, and the only non-zero elements to
the left of the diagonal in the row for the ith animal are −0.5 and −0.25 for
the columns corresponding to the sire and maternal grandsire, respectively.
The elements of D and therefore D−1 can be calculated in a manner similar
to that described in Sections 2.2 and 2.3. The diagonal elements of D (dii)
for animal i are calculated by the following rules.

If both sire (s) and maternal grandsire (k) are known:

dii = [var(ui) – var(1
2us + 1

4uk)]/su
2

where the u terms are breeding values. Following the same arguments as
in Section 2.2:

d F Fii s k= − −11
16

1
4

1
16

where Fs and Fk are inbreeding coefficients for sire and maternal grand-
sire, respectively.

When only the maternal grandsire is known:

dii = [var(ui) – var(1
4uk)]/su

2

d Fii k= −15
16

1
16

When only the sire is known or no parents are known, dii is as calcu-
lated in Section 2.2.

The elements of D−1 are reciprocals of D, calculated above. Using
equation [2.3], A−1 can be calculated on the basis of T−1 and D−1, defined
above, as follows.

Initially, set A−1 to zero.
If both sire (s) and maternal grandsire (k) of animal i are known, add:

dii
−1 to the (i,i) element

−dii
−1/2 to the (s,i) and (i,s) elements

−dii
−1/4 to the (k,i) and (i,k) elements

dii
−1/4 to the (s,s) element

dii
−1/8 to the (s,k) and (k,s) elements

dii
−1/16 to the (k,k) element

Without inbreeding, dii
− =1 16

11.
If only the maternal grandsire (k) of animal i is known, add:

dii
−1 to the (i,i) element

−dii
−1/4 to the (k,i) and (i,k) elements

dii
−1/16 to the (k,k) element
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Without inbreeding, dii
− =1 16

15.

If only the sire (s) of animal i is known, add:

dii
−1 to the (i,i) element

−dii
−1/2 to the (s,i) and (i,s) elements

dii
−1/4 to the (s,s) element

Without inbreeding, dii
− =1 4

3 in this situation, as in Section 2.3.1.
When s and k are unknown, add:

dii
−1 to the (i,i) element

and dii
−1 = 1.

2.4.1 An example of the inverse of the relationship matrix for sires and
maternal grandsires

A pedigree consisting of sires and maternal grandsires is set up from the
pedigree in Table 2.1:

Sire Sire of sire
Maternal

grandsire of sire

1 Unknown Unknown
4 1 Unknown
5 4 1

Recoding sires 1 to n, the pedigree becomes:

1 Unknown Unknown
2 1 Unknown
3 2 1

Using equations [2.6] and [2.7], A is:

A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

10 05 05
05 10 0625
05 0625 1125

. . .

. . .

. . .

Note that the relationship among sires is the same as in A calculated from
the full pedigree in Section 2.1.

The T−1 matrix for the pedigree is:

T− = −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

10 00 00
05 10 00
025 05 10

. . .

. . .

. . .
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and:

D = diag(1, 4
3

16
11, )

Applying equation [2.3], A−1 is:

A − =
− −

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

10 05 025
00 10 05
00 00 10

1 0 0
0 4

. . .

. . .

. . .
3

16
11

0
0 0

10 00 00
05 10 00
025 05 10

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
− −

⎡ . . .
. . .
. . .⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
− −

− −
− −

1424 0485 0364
0485 1697 0727
0364 0727 14

. . .

. . .

. . . 55

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

To calculate the inverse of the sire and maternal grandsire relationship
matrix, applying the rules given earlier, initially set A−1 to zero. The ele-
ments of D−1 have already been given above. Processing the first animal,
add 1 ( )d11

1− to the diagonal element (1,1) of A−1. For the second animal,
added 4

3 22
1( )d − to the diagonal element (2,2) of A−1, 1

3 to (1,1) element and − 2
3

to the (1,2) and (2,1) elements. Finally, processing the third animal, add
16
11 33

1( )d − to the (3,3) element of A−1, − 16
22 to the (3,4) and (4,3) elements, − 16

44
to the (1,3) and (3,1) elements, 16

44 to the (4,4) element, 16
88 to the (1,4) and

(4,1) elements and 16
176 to the (1,1) element. This gives the same A−1 as previ-

ously calculated using equation [2.3].
In the next chapter, the incorporation of A−1 in the mixed model equa-

tions for the prediction of breeding value using BLUP is addressed.

Genetic Covariance Between Relatives 37

51
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:20:51 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



3 Best Linear Unbiased Prediction
of Breeding Value: Univariate
Models with One Random Effect

In Chapter 1, the use of the selection index (best linear prediction) for
genetic evaluation was examined; however, it is associated with some
major disadvantages. First, records may have to be pre-adjusted for fixed
or environmental factors and these are assumed to be known. These are
not usually known, especially when no prior data exist for new subclasses
of fixed effect or new environmental factors. Secondly, solutions to the
index equations require the inverse of the covariance matrix for observa-
tions and this may not be computationally feasible for large data sets.

Henderson (1949) developed a methodology called best linear unbi-
ased prediction (BLUP), by which fixed effects and breeding values can be
simultaneously estimated. The properties of the methodology are similar to
those of a selection index and the methodology reduces to selection indices
when no adjustments for environmental factors are needed. The properties
of BLUP are more or less incorporated in the name:

● Best – means it maximizes the correlation between true (a) and pre-
dicted breeding value ( $)a or minimizes prediction error variance (PEV)
(var(a − â)).

● Linear – predictors are linear functions of observations.
● Unbiased – estimation of realized values for a random variable, such

as animal breeding values, and of estimable functions of fixed effects
are unbiased ( ( $))E a a= .

● Prediction – involves prediction of true breeding value.

BLUP has found widespread usage in genetic evaluation of domestic
animals because of its desirable statistical properties. This has been
enhanced by the steady increase in computing power and has evolved in
terms of its application to simple models, such as the sire model, in its early
years, and to more complex models, such as the animal, maternal,
multivariate and random regression models, in recent years. Several general

© R.A. Mrode 2005. Linear Models for the Prediction of Animal Breeding Values,
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purpose computer packages for BLUP evaluations, such as PEST (Groeneveld
et al., 1990), BREEDPLAN and a host of others, have been written and made
available. In this chapter, BLUP’s theoretical background is briefly presented
below, considering a univariate animal model, and its application to several
univariate models in genetic evaluation is illustrated.

3.1 Brief Theoretical Background

Consider the following equation for a mixed linear model:

y = Xb + Za + e [3.1]

where:

y = ×n 1vector of observations; n = number of records
b = ×p 1vector of fixed effects; p = number of levels for fixed effects
a = ×q 1 vector of random animal effects; q = number of levels for

random effects
e = ×n 1vector of random residual effects
X = design matrix of order n p× , which relates records to fixed

effects
Z = design matrix of order n q× , which relates records to random

animal effects

Both X and Z are termed incidence matrices.
It is assumed that the expectations (E) of the variables are:

E(y) = Xb; E(a) = E(e) = 0

and it is assumed that residual effects, which include random environmen-
tal and non-additive genetic effects, are independently distributed with
variance s e

2; therefore, var(e) = I Rs e
2 = ; var(a) = As a

2 = G and cov(a, e) =
cov(e, a) = 0, where A is the numerator relationship matrix.

Then:

var(y) = V = var(Za + e)
= Z var(a)Z¢ + var(e) + cov(Za, e) + cov(e, Za)
= ZGZ¢ + R + Zcov(a, e) + cov(e, a)Z¢

Since cov(a, e) = cov(e, a) = 0, then:

V = ZGZ¢ + R [3.2]

cov(y, a) = cov(Za + e, a)
= cov(Za, a) + cov(e, a)
= Z cov(a, a)
= ZG

and:
cov(y, e) = cov(Za + e, e)

= cov(Za, e) + cov(e, e)
= Z cov(a, e) + cov(e, e)
= R
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The general problem with respect to [3.1] is to predict a linear func-
tion of b and a, that is, k¢b + a (predictand), using a linear function of y,
say L¢y (predictor), given that k¢b is estimable. The predictor L¢y is chosen
such that it is unbiased (i.e. its expected value is equal to the expected
value of the predictand) and PEV is minimized. This minimization leads
to the BLUP of a (Henderson, 1973) as:

â = BLUP(a) = GZ¢V−1(y − X $b) [3.3]

and:

L¢y = k¢ $b + GZ¢V −1(y − X $b)

where $b = (X¢V−1X)X¢V−1y, the generalized least-square solution (GLS) for
b, and ′k b$ is the best linear unbiased estimator (BLUE) of k¢b, given that
k¢b is estimable. BLUE is similar in meaning and properties to BLUP but
relates to estimates of linear functions of fixed effects. It is an estimator
of the estimable functions of fixed effects that has minimum sampling
variance, is unbiased and is based on the linear function of the data
(Henderson, 1984). An outline for the derivation of equation [3.3] and the
equation for L¢y above are given in Appendix C.1.

As mentioned in Appendix C.1, BLUP is equivalent to the selection
index with the GLS of $b substituted for b in equation [3.3]. Alternatively,
this could simply be illustrated (W.G. Hill, Edinburgh, 1995, personal
communication) by considering the index to compute breeding values for
a group of individuals with relationship matrix A, which have records
with known mean. From equation [1.17], the relevant matrices are then:

P = Is e
2 + As a

2 and G = As a
2

with:

a = s e
2/s a

2 or (1 − h2)/h2

Hence:

I = P−1Gy = (I + aA−1)−1y

which is similar to the BLUP equation [3.3], assuming fixed effects are
absent and with Z = I.

The solutions for a and b in [3.3] require V−1, which is not always
computationally feasible. However, Henderson (1950) presented the mixed
model equations (MME) to estimate solutions b (fixed effects solutions)
and to predict solutions for random effects (a) simultaneously without the
need for computing V−1. The proof that solutions for b and a from MME
are the GLS of b and the BLUP of a is given in Appendix C.2. The MME for
[3.1] are:

′ ′
′ ′ +

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′− −

− − −

X R X X R Z
Z R X Z R Z G

b
a

X R1 1

1 1 1

$

$

−

−′
⎡

⎣
⎢

⎤

⎦
⎥

1

1

y
Z R y

assuming that R and G are non-singular. Since R−1 is an identity matrix
from the earlier definition of R in this section, it can be factorized from

BLUP: Univariate Models with One Random Effect 41

55
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:20:52 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



both sides of the equation to give:

′ ′
′ ′ +

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′
′

⎡

⎣
⎢

⎤

⎦
⎥−

X X X Z
Z X Z Z A

b
a

X y
Z y1a

$

$
[3.4]

Note that the MME may not be of full rank, usually due to depend-
ency in the coefficient matrix for fixed environmental effects. It may be
necessary to set certain levels of fixed effects to zero when there is
dependency to obtain solutions to the mixed model equations (see Sec-
tion 3.5). However, the equations for a [3.3] are usually of full rank since
V is usually positive definite and Xb is invariant to the choice of
constraint.

Some of the basic assumptions of the linear model for the prediction
of breeding value were given in Section 1.2. The solutions to the MME
give the BLUE of k¢b and BLUP of a under certain assumptions, especially
when data span several generations and may be subject to selection.
These assumptions are:

1. Distributions of y, u and e are assumed to be multivariate normal, imply-
ing that traits are determined by many additive genes of infinitesimal effects
at many infinitely unlinked loci (infinitesimal model, see Section 1.1).
With the infinitesimal model, changes in genetic variance resulting from
selection, such as gametic disequilibrium (negative covariance between fre-
quencies of genes at different loci), or from inbreeding and genetic drift are
accounted for in the MME through the inclusion of the relationship matrix
(Sorensen and Kennedy, 1983), as well as assortative mating (Kemp, 1985).
2. The variances and covariances (R and G) for the base population are
assumed to be known or at least known to proportionality. In practice,
variances and covariances of the base population are never known exactly
but, assuming the infinitesimal model, these can be estimated by
restricted maximium likelihood (REML) if data include information on
which selection is based.
3. The MME can account for selection if based on a linear function of y
(Henderson, 1975) and there is no selection on information not included
in the data.

The use of these MME for the prediction of breeding values and estimation
of fixed effects under an animal model is presented in the next section.

3.2 A Model for an Animal Evaluation (Animal Model)

Example 3.1
Consider the following data set (Table 3.1) for the pre-weaning gain (WWG)
of beef calves.

The objective is to estimate the effects of sex and predict breeding
values for all animals. Assume that s a

2 = 20 and s e
2 = 40; therefore

a = 40
20 = 2.

42 Chapter 3
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The model to describe the observations is:

yij = pi + aj + eij

where: yij = the WWG of the jth calf of the ith sex, pi = the fixed effect of the
ith sex, aj = random effect of the jth calf, and eij = random error effect. In
matrix notation the model is the same as that described in equation [3.1].

3.2.1 Constructing the mixed model equations

The matrix X in the MME relates records to fixed (sex) effects. For the
example data set, its transpose is:

′ = ⎡

⎣
⎢

⎤

⎦
⎥X

1 0 0 1 1
0 1 1 0 0

The first row indicates that the first, fourth and fifth observations are from
male calves and the second row shows that the second and third records
are from female calves.

The Z matrix relates records to all animals – those with or without
yield records. In this case, animals 1 to 3 are parents with no records and
animals 4 to 8 are recorded. Thus, for the example data, Z is:

Z =

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Note that the first three columns of Z are zeros and these correspond to the
animals 1 to 3, which are parents without records.

The vector y is simply the vector of the observations. For the data set
under consideration, it is:

y¢ = [4.5 2.9 3.9 3.5 5.0]

Having set up the matrices X, Z and y, the other matrices in the MME, such
as X¢Z, Z¢X, X¢y and Z¢y, are easily obtained by matrix multiplication. In
practice, these matrices are not calculated through multiplication from the

BLUP: Univariate Models with One Random Effect 43

Calf Sex Sire Dam WWG (kg)

4 Male 1 Unknown 4.5
5 Female 3 2 2.9
6 Female 1 2 3.9
7 Male 4 5 3.5
8 Male 3 6 5.0

Table 3.1. Pre-weaning gain (kg) for five beef calves.
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design matrices and vector of observations but are usually set up or com-
puted directly. However, for the example data set, these matrices are:

′ ⎡

⎣
⎢

⎤

⎦
⎥X Z =

0 0 0 1 0 0 1 1
0 0 0 0 1 1 0 0

Z¢X is the transpose of X¢Z

X¢y =
130

68
.
.

⎛
⎝
⎜

⎞
⎠
⎟ and the transpose of Z¢y is (0 0 0 4.5 2.9 3.9 3.5 5.0)

The matrix Z¢Z is a diagonal matrix, with the first three diagonal elements
zeros and the next five elements all ones.

The various matrices in the MME have been calculated except A −1a.
With these matrices, we can set up what are known as the least-square
equations (LSE) as:

′ ′
′ ′

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′
′

⎡

⎣
⎢

⎤

⎦
⎥

X X X Z
Z X Z Z

b
a

X y
Z y

$

$

For the example data set, the LSE are:

3 0 0 0 0 1 0 0 1 1
0 2 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

$

$

$

$

$

$

b

b

a

a

a

a

1

2

1

2

3

4

$

$

$

$

.

a

a

a

a

5

6

7

8

130
6

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

.

.

.

.

.

.

.

.

.

8
00
00
00
45
29
39
35
50

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The addition of A −1a to Z¢Z in the least-square equations yields the MME.
Using the rules outlined in Chapter 2, Section 2.3.1, A−1 for the example
data is:

A − =

− −

1

1833 0500 0000 0667 0000 1000 0000 0000
050
. . . . . . . .
. 0 2000 0500 0000 1000 1000 0000 0000

0000 0500 2
. . . . . . .

. . .
− −

000 0000 1000 0500 0000 1000
0667 0000 0000 183

. . . . .
. . . .

− −
− 3 0500 0000 1000 0000

0000 1000 1000 0500 2500 0
. . . .

. . . . .
−

− − . . .
. . . . . . .

000 1000 0000
1000 1000 0500 0000 0000 2500 00

−
− − 00 1000
0000 0000 0000 1000 1000 0000 2000 0000

−
− −

.
. . . . . . . .

0000 0000 1000 0000 0000 1000 0000 2000. . . . . . . .− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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and A−1a is easily obtained by multiplying every element of A−1 by 2, the
value of a. Adding A−1a to Z¢Z, the MME for the example data are:

$

$

$

$

$

$

$

$

$

$

b

b

a

a

a

a

a

a

a

a

1

2

1

2

3

4

5

6

7

8

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

3000 0000 0000 0000 0000 1000 0000 0000 10. . . . . . . . . 00 1000
0000 2000 0000 0000 0000 0000 1000 1000 00

.

. . . . . . . . . 00 0000
0000 0000 3667 1000 0000 1333 0000 2000 0

.

. . . . . . . .− − . .

. . . . . . . .

000 0000
0000 0000 1000 4000 1000 0000 2000 200− − 0 0000 0000
0000 0000 0000 1000 4000 0000 2000 10

. .

. . . . . . . .− 00 0000 2000
1000 0000 1333 0000 0000 4667 1000 0

. .

. . . . . . .

−
− . . .

. . . . . . .

000 2000 0000
0000 1000 0000 2000 2000 1000 60

−
− − 00 0000 2000 0000

0000 1000 2000 2000 1000 0000
. . .

. . . . . .

−
− − 0000 6000 0000 2000

1000 0000 0000 0000 0000 20
. . . .

. . . . . .

−
− 00 2000 0000 5000 0000

1000 0000 0000 0000 2000 0
−

−
. . . .

. . . . . . . . . .000 0000 2000 0000 5000−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥

−1
130

68
00
00
00
45
29
39
35
50

.

.

.

.

.

.

.

.

.

.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Solving the MME by direct inversion of the coefficient matrix gives
the following solutions:

Effects Solutions

Sex*
1 4.358
2 3.404

Animal
1 0.098
2 −0.019
3 −0.041
4 −0.009
5 −0.186
6 0.177
7 −0.249
8 0.183

*1 = male, 2 = female (throughout chapter)

The solutions indicate that male calves have a higher rate of gain up to
weaning than female calves, which is consistent with the raw averages for
males and females. From the first row in the MME (equation [3.4]), the
equations for sex effect are:

(X¢X) $b = X¢y − (X¢Z)â
$b = (X¢X)−1 X¢(y − Zâ)

Thus the solution for the ith level of sex effect may be written as:

$ $bi ij
j

ij
j

iy a= −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑ diag [3.5]

where yij is the record and $aij is the solution of the jth animals within the
sex subclass i and diagi is the sum of observations for the sex subclass i.
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For instance, the solution for male calves is:

b1 = [(4.5 + 3.5 + 5.0) − (−0.009 + −0.249 + 0.183)]/3 = 4.358

The equations for animal effects from the second row of equation [3.4] are:

(Z¢Z + A−1a) $a = Z¢y − (Z¢X) $b
(Z¢Z + A−1a) $a = Z¢(y − X $b)
(Z¢Z + A−1a) $a = (Z¢Z)YD [3.6]

with YD = (Z¢Z)−1 Z¢(y − X $b), where YD is the vector of yield deviations
and represents the yields of the animal adjusted for all effects other than
genetic merit and error. The matrix A−1 has non-zero off-diagonals only
for the animal’s parents, progeny and mates (see Chapter 2, Section 2.3);
transferring off-diagonal terms to the right-hand side of [3.6] gives the
equation for animal i with k progeny as:

(Z¢Z + uii a) $ai = auip( $as + $ad ) + (Z¢Z)YD + a u a aim
k

anim m∑ −( $ . $ )05

where uip is the element of the A−1 between animal i and its parents with
the sign reversed and uim is the element of A−1 between the animal and the
dam of the kth progeny.

Therefore:

(Z¢Z + uii a) $ai = aupar(PA) + (Z¢Z)YD + 0.5a uprog
k
∑ (2 $aanim − $am ) [3.7]

where PA is the parent average, upar = 2(uip), with uip equals 1, 2
3 or 1

2 if
both, one or neither parents are known and uprog = 2(uim), with uim equals
1 when the mate of animal i is known or 2

3 when the mate is not known.
Multiplying both sides of the equation by (Z¢Z + uii a)−1 (VanRaden

and Wiggans, 1991) gives:

ai = n1(PA) + n2(YD) + n3(PC) [3.8]

where PC = uprog
k
∑ (2 $aanim − $am )/ uprog

k
∑ is regarded as the progeny

contribution and n1, n2 and n3 are weights that sum to one. The derivation
of the equation for PC is given in Appendix C.3. The numerators of n1, n2
and n3 are aupar , Z¢Z (number of records the animal has) and 0.5aΣ kuprog ,
respectively. The denominator of all three n terms is the sum of the three
numerators.

From equation [3.8], the breeding value for an animal is dependent on
the amount of information available on that animal. For base animals, YD
in the equation does not exist and $as and $ad are zeros with no genetic
groups in the model; therefore, the solutions for these animals are a func-
tion of the contributions from their progeny breeding values adjusted for
the mate solutions (PC). For instance, the proof for sire 1 in Example 3.1
can be calculated from the contributions from its progeny (calves 4 and 6)
using equation [3.8] as:

$a1 = n1(0) + n3[( 2
3)(2 $a4 ) + (1)(2 $a6 − $a2)]/( 2

3 + 1)
$a1 = n1(0) + n3[( 2

3)(−0.018) + (1)(0.354 − (−0.019))]/( 2
3 + 1)

$a1 = n3 (0.2166) = 0.098
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with n1 = a
3 667. and n3 = 0.5a( 2

3 + 1)/3.667, where 3.667 is the sum of the
numerators of n1 and n3. The higher breeding value for sire 1 compared
with sire 3 is due to the fact that the progeny of sire 1 have higher proofs
after correcting for the solutions of the mates.

The solution for an animal with a record but with no progeny depend
on the average contributions from its parents and its yield deviation.
Equation [3.8] reduces to:

ai = n1(PA) + n2(YD)

Thus, for progeny 8, its estimated breeding value can be calculated as:

a = n1( $a3 + $a6 )/2 + n2(y8 − b1)
= n1(0.068) + n2(5.0 − 4.358) = 0.183

with n1 = 2
5
a, n2 = 1

5 and 5 is the sum of the numerators of n1 and n2.
It can also be demonstrated that for an animal with a record but with

no progeny its solution is a function of an estimate of Mendelian sampling
(m) and parent average. From equation [c.8] in Appendix C.3, the solution
for calf i with sire s and dam d can be written as:

( )$ $ $1+ + + =u a u a u a yii c cs s cd d ia a a

Therefore:

$ ( ) [ $ $ ]a u y u a u ac ii i is s id d= + − −−1 1a a a

If there is no inbreeding, uis = uid = −0.5uii. Therefore:

$ ( ) [ . ( $ $ )]a u y u a ai ii i ii s d= + + +−1 051a a

= + − + + + +−( ) [( . ( $ $ )) . ( )( $ $ )1 05 05 11u y a a u a aii i s d ii s da a ]
= + − + + +−( ) [( . ( $ $ )) . ( $ $ )]1 05 051u y a a a aii i s d s da

$ai = 0.5(âs + âd) + mi [3.9]

where mi = k(yi − 0.5$as − 0.5$ad ), is an estimate of Mendelian sampling
and k = 1/(1 + d−1a), with d = 1

2 if both parents of animal i are known or 3
4 if

only one parent is known. Alternatively, the weight (k) can also be
derived as:

k = cov(m, yc)/var(yc) = cov(m, m + e)/(var(m) + var(e))

where yc is the yield record corrected for fixed effects and parent
average.

k = var(m)/(var(m) + var(e))
= ds a

2/(ds a
2 + s e

2)
= dh2/(dh2 + (1 − h2))

where d, as defined earlier, equals 1
2,

3
4 or 1 if both, one or no parents are

known, respectively. Using the parameters for Example 3.1 and assuming
both parents are known, k = 10/(10 + 40) = 0.2.
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Thus for progeny 8, its estimated breeding value using [3.9], can be
calculated as:

$ . ( $ $ ) ( . ( $ $ ))a a a k y b a a8 3 6 3 1 3 605 05= + + − − +
= − + + − − − +05 0041 0177 02 50 4358 05 0041 0177. ( . . ) . ( . . . ( . . ))
= 0183.

Compared with calf 7, the proof of calf 8 is higher because it has a higher
parent average solution and higher estimate of Mendelian sampling.

In the case of an animal with a record and having progeny, there is an
additional contribution from its offspring to its breeding value. Thus the
breeding values of progeny 4 and 6 using [3.8] are:

$ ( $a n a4 1 1= /2 22 4 1 3 7 5) ( ) (( ( $ ) $ ))+ − + −n y b n a a
= n1 0098( . / ) ( . . ) (( ( . ) ( . )) .2 45 4358 2 0249 0186 00092 3+ − + − − − = −n n

with n1 = 2a( )2
3 /4.667, n2 = 1/4.667 and n3 = 0.5a/4.667; 4.676 = the sum

of the numerators of n n n1 2 3, ;and and:

$ (( $ $ )a n a a6 1 1 2= + /2 22 6 2 3 8 3) ( ) ( ( $ ) $ )+ − + −n y b n a a

= + − + − + − −n n n1 2 30098 0019 2 39 3404 2 0183(( . . )/ ) ( . . ) ( ( . ) ( 0041. ))
= 0177.

with n1 = 2
6
a, n2 = 1

6 and n3 = 0 5
6
. a; 6 = the sum of the numerators of n1, n2

and n3.
Although contributions from parent average to both calves are similar,

differences in progeny contributions resulted in a higher breeding value
for calf 6, accounting for about 75% of the difference in the predicted
breeding values between both calves.

3.2.2 Progeny (daughter) yield deviation

The yield deviation of a progeny contributes indirectly to the breeding
value of its sire after it has been combined with information from parents
and the offspring of the progeny (see equation [3.8]). Thus progeny contri-
bution is a regressed measure and it is not an independent measure of
progeny performance as information from parents and the progeny’s off-
spring is included. VanRaden and Wiggans (1991) indicated that a more
independent and unregressed measure of progeny performance is prog-
eny yield deviation (PYD). However, they called it daughter yield devia-
tion (DYD) as they were dealing with the dairy cattle situation and records
were only available for daughters of bulls. PYD or DYD can simply be
defined as a weighted average of corrected YD of all progeny of a sire; the
correction is for all fixed effects and the breeding values of the mates of
the sire.

DYD has been used for various purposes in dairy cattle evaluation and
research. It was used in the early 1990s for the calculation of conversion
equations to convert bull evaluations across several countries (Goddard,
1985). It was initially the variable of choice for international evaluations
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of dairy bulls by Interbull but, due to the inability of several countries to
calculate DYD, deregressed proofs were used (Sigurdsson and Banos,
1995). In addition, Interbull methods for the validation of genetic trends
in national evaluations prior to acceptance for international evaluations
utilize DYDs (Boichard et al., 1995). DYDs are also commonly employed
in dairy cattle studies aimed at detecting quantitative trait loci using the
granddaughter design (Weller, 2001). The equation for calculating DYD
from univariate animal model evaluations was presented by VanRaden
and Wiggans (1991) and its derivation is briefly outlined.

For the progeny (prog) of a bull i that has no offspring of her own,
equation [3.8] becomes:

$a n nprog prog prog= +1 2PA YD [3.10]

Substituting [3.10] into the equation for PC in [3.8] gives:

PC PA YD= + −∑ ∑u n n a uprog prog prog mi
k

prog
k

[ ( ) $ ]2 1 2

= + + −∑ ∑u n a a n a uprog prog i mi prog mi
k

prog
k

[ ( $ $ ) $ ]1 2 2YD

where n1prog and n2prog are the n1 and n2 of progeny. Since these progeny
have no offspring of their own, n3prog equals zero; therefore n1prog equals
1 − n2prog. Then:

PC 2YD= − + + −∑u n a a n a uprog prog i mi prog mi
k

pr[( )( $ $ ) $ ]1 2 2 og
k
∑

= − + −∑ ∑u n a n a uprog
k

prog i prog mi prog
k

[( ) $ ( $ )]1 22 2 YD

= + − + −∑ ∑$ [ ( $ $ )]a u n a a ui prog prog
k

i mi prog
k

2 2YD [3.11]

Substituting [3.11] into [3.8] and accumulating all terms involving $ai to
the left side gives:

$ $ $a n a n u n a u

n n n u

i i prog prog i
k

prog
k

p

− +

=

∑ ∑3 3 2

1 2 3PA + YD + rog prog mi
k

prog
k

n a u2 2( $ )YD −∑ ∑
Therefore:

( $1 3 3 2

1 2 3

− +
⎛

⎝
⎜

⎞

⎠
⎟

=

∑ ∑n n u n u a

n n n

prog prog
k

prog
k

i

PA + YD + u n a uprog prog mi
k

prog
k

2 2( $ )YD −∑ ∑
Substituting (n1 + n2) for 1 – n3 and removing the common denominator of
the n terms from both sides of the equation, with DYD as:

DYD or PYD = 2YDu n a u nprog prog
k

m prog prog
k

2 2∑ ∑−( $ ) [3.12]

the breeding value of animal i can be expressed as:

$a w w wi = 1 2 3PA + YD + DYD [3.13]
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where the weights w1, w2 and w3 sum to unity. The numerators of w1 and
w2 are equal to those of n1 and n2 in equation [3.8]. The numerator of
w3 = 0.5aSkuprog n2prog, which is derived as n3 times Skuprog n2prog/Skuprog.
As VanRaden and Wiggans (1991) indicated, w3 is always less than unity
and therefore less than n3, which reflects the fact that PYD or DYD is an
unregressed measure of progeny performance. Note that, for bulls with
granddaughters, PYD or DYD does not include information from these
granddaughters. Also, in the dairy cattle situation, the information from
sons is not included in the calculation of DYD.

Illustrating the calculation of PYD or DYD

The computation of DYD is usually carried out in dairy cattle evaluations
and it is illustrated later for a dairy data set in Example 4.1. Using the
beef data in Example 3.1, the calculation of PYD is briefly illustrated for
animal 3, using information on both female and male progeny since obser-
vations are available on both sexes.

First, the YDs for both progeny of sire 3 are calculated:

YD5 5 2 29 3404 0504= − = − = −( ) ( . . ) .y b
YD8 8 1 50 4358 0642= − = − =( ) ( . . ) .y b

Therefore, using [3.12]:

PYD YD YD5 83 2 5 5 2 2 8 8 6 2 52 2= − + −n u a n u a n( ) ( ) ( ) ( ) (( $ ) ( $ )/( ) ( ) ( ) ( ) )u n u5 2 8 8+
= − − − + −02 1 1008 0019 02 1 1284 0177 02 1. ( )( . ( . ) . ( )( . . )/( . ( ) . ( ))+ 02 1
= 0059.

where n2(j) and u(j) are the n2 and u for the jth progeny. Note that, in calcu-
lating n2(j), it has been assumed that progeny j has no offspring. Thus
n2(5) = 1/(1 + 2a(1)) = 0.2.

Using [3.12] to calculate the breeding value of sire 3 gives the value of
0.0098, with w1 = 0.833 and w2 = 0.167. This is different from the breed-
ing value reported from solving the MME as the granddaughter informa-
tion (calf 7) has not been included.

3.2.3 Accuracy of evaluations

The accuracy (r) of predictions is the correlation between true and pre-
dicted breeding values. However, in dairy cattle evaluations, the accuracy
of evaluations is usually expressed in terms of reliability, with the squared
correlation between true and predicted breeding values (r2). The calcula-
tions for r or r2 require the diagonal elements of the inverse of the MME, as
shown by Henderson (1975).

If the coefficient matrix of the MME in [3.4] is represented as:

C C

C C
11 12

21 22

⎡

⎣
⎢

⎤

⎦
⎥
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and a generalized inverse of the coefficient matrix as:

C C

C C

11 12

21 22

⎡

⎣
⎢

⎤

⎦
⎥

Henderson (1975) showed that the PEV is:

PEV = var( )a a C e− =$ 22 2s [3.14]

Thus the diagonal elements of the coefficient matrix for animal equations
are needed to calculate PEV for animals. The PEV could be regarded as the
fraction of additive genetic variance not accounted for by the prediction.
Therefore it could be expressed as:

PEV = C re a
22 2 2 21s s= −( )

where r2 is the squared correlation between the true and estimated breed-
ing values.

Thus, for animal i:

d ri e as s2 2 21= −( )

where di is the ith diagonal element of C 22.

di es 2/s a r2 21= −
r di

2 1= − a

and the accuracy (r) is just the square root of reliability.
From [3.14], the standard error of prediction (SEP) is:

SEP = −var( $)a a

= di es 2 for animal i

The inverse of the coefficient matrix for Example 3.1 is:

0596 0157 0164 0084 0131 0265 0148 0166 02. . . . . . . . .− − − − − − − 84 0238
0157 0802 0133 0241 0112 0087 0299 0

−
− − − − − −

.
. . . . . . . . . .
. . . . . . .

306 0186 0199
0164 0133 0 471 0007 0033 0220 0

− −
− − 045 0221 0139 0134

0084 0241 0007 0 492 0010 002
. . .

. . . . . .− − − 0 0237 0245 0120 0111
0131 0112 0033 0010 0 456 0

. . . .
. . . . .− − − . . . . .
. . . . .

048 0201 0023 0126 0218
0265 0087 0220 0020 004− − 8 0 428 0047 0128 0243 0123
0148 0299 0045 0237 0

. . . . .
. . . . .− − 201 0047 0 428 0170 0220 0178

0166 0306 0221 0245
. . . . .

. . . .− − 0023 0128 0170 0 442 0152 0219
0284 0186 0139 01

. . . . . .
. . . .− − 20 0126 0243 0220 0152 0 442 0168

0238 0199 0134 0
. . . . . .

. . .− − . . . . . . .111 0218 0123 0178 0219 0168 0 422

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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The r2, r and SEP for animals in Example 3.1 are:

Animal Diagonals of inverse r 2 r SEP

1 0.471 0.058 0.241 4.341
2 0.492 0.016 0.126 4.436
3 0.456 0.088 0.297 4.271
4 0.428 0.144 0.379 4.138
5 0.428 0.144 0.379 4.138
6 0.442 0.116 0.341 4.205
7 0.442 0.116 0.341 4.205
8 0.422 0.156 0.395 4.109

In the example, the reliabilities of animals with records are generally
higher than those of ancestors since each has only two progeny. The two
calves in the female sex subclass are progeny of dam 2 and this may
explain the very low reliability for this ancestor as the effective number of
daughters is reduced. The amount of information on calves 4 and 5 is very
similar. Each has a record, a common sire and parents of the same prog-
eny: hence they have the same reliability. Calf 8 has the highest reliability
and this is due to the information from the parents (its sire has another
progeny and the dam has both parents known) and its record. The stan-
dard errors are large due to the small size of the data set but follow the
same pattern as the reliabilities.

In practice, obtaining the inverse of the MME for large populations is
not feasible and various methods have been used to approximate the diag-
onal element of the inverse. A methodology published by Meyer (1989)
and used in the national dairy evaluation programme in Canada (Wiggans
et al., 1992) in the 1990s is presented in Appendix D.

3.3 A Sire Model

The application of a sire model implies that only sires are being evaluated
using progeny records. Most early applications of BLUP for the prediction
of breeding values, especially in dairy cattle, were based on a sire model.
The main advantage with a sire model is that the number of equations is
reduced compared with an animal model since only sires are evaluated.
However, with a sire model, the genetic merit of the mate (dam of prog-
eny) is not accounted for. It is assumed that all mates are of similar genetic
merit and this can result in bias in the predicted breeding values if there is
preferential mating.

The sire model in matrix notation is:

y = Xb + Zs + e [3.15]
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All terms in [3.15] are as defined for [3.1] and s is the vector of random
sire effects, Z now relates records to sires and:

var(s A) = s s
2

var(y ZAZ R) = ′ +s s
2

where A is the numerator relationship matrix for sires, s ss a
2 2025= . and

R = I es 2. The MMEs are exactly the same as in [3.4] except that a =
s se s

2 2/ = ( )/4 2 2− h h .

3.3.1 An illustration

Example 3.2
An application of a sire model is illustrated below using the same data as
for the animal model evaluation in Table 3.1. Assigning records to sires
and including the pedigree for sires, the data can be presented as follows.

Sex of
progeny Sire of sire Dam of sire Dam WWG (kg)

Male 1 – – 4.5
Female 3 – – 2.9
Female 1 – – 3.9
Male 4 1 – 3.5
Male 3 – – 5.0

The objective is to estimate sex effects and predict breeding values for
sires 1, 3 and 4. Using the same parameters as in Section 3.2.1, s s

2 =
025 20 5. ( ) = and s e

2 60 5 55= − = ; therefore a = =55
5 11.

SETTING THE DESIGN MATRICES AND MME

The design matrix X relating records to sex is as defined in Section 3.2.1.
However, Z is different and its transpose is:

′
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Z =
1 0 1 0 0
0 1 0 0 1
0 0 0 1 0

indicating that sires 1 and 3 have two records each while sire 4 has only
one record. The vector of observations y is as defined in Section 3.1. The
matrices X¢X, X¢Z, Z¢X, Z¢Z, X¢y and Z¢y in the MME can easily be calcu-
lated through matrix multiplication. Thus:

′ = ⎡

⎣
⎢

⎤

⎦
⎥ ′ = ⎡

⎣
⎢

⎤

⎦
⎥X X X Z

3 0
0 2

1 1 1
1 1 0

,

′ =Z Z diag(2,2, 1)
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X¢y is as in Section 3.1 and the transpose of Z¢y is:

(Z¢y)¢ = [8.4 7.9 3.5]

The least-square equations are:

3 0 1 1 1
0 2 1 1 0
1 1 2 0 0
1 1 0 2 0
1 0 0 0 1

1

2

1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

$

$

$

b

b

s
$

$

.

.
.
.
.

s

s
3

4

1300
680
840
790
350

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Apart from the fact that sire 4 is the son of sire 1, no other relationships
exist among the three sires. Therefore A−1 for the three sires is:

A − =
−

−

⎡

⎣

⎢
⎢
⎢

1

1333 00 0667
0000 10 0000
0667 00 1333

. . .

. . .
. . .

⎤

⎦

⎥
⎥
⎥

The MME obtained after adding A−1a to Z¢Z in the LSEs are:

$

$

$

$

$

. . . .b

b

s

s

s

1

2

1

3

4

3000 0000 1000 100⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

0 1000
0000 2000 1000 1000 0000
1000 1000 16666 00

.
. . . . .
. . . . 00 7334

1000 1000 0000 13000 0000
1000 0000 7334

−

−

.
. . . . .
. . . 0000 15666

1300
680
840
790
35

1

. .

.

.
.
.
.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

−

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The solutions to the MME by direct inversion of the coefficient matrix are:

Effects Solutions

Sex
1 4.336
2 3.382

Sire
1 0.022
3 0.014
4 −0.043

The difference between solutions for sex subclasses, L¢b, where L is
[1 − 1], is the same as in the animal model. However, sire proofs and dif-
ferences between sire proofs ( $ $ )s si j− are different from those in the ani-
mal model, although the ranking for the three sires is the same in both
models. The differences in the proofs are due to the lack of adjustment
for breeding values of mates in the sire model and differences in progeny
contributions under both models. In this example, most of the differ-
ences in sire solutions under both models are due to differences in
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progeny contributions. The proofs for these sires under the animal
model are based on their progeny contributions, since their parents are
unknown. This contribution from progeny includes information from
progeny yields and those of grand-offspring of the sires. However, in the
sire model, progeny contributions include information from only male
grand-offspring of the sires in addition to progeny yields. The effect of
this difference on sire proofs under the two models is illustrated for two
bulls below.

From the calculations in Section 3.2.1, the proportionate contribu-
tions of calves 4 and 6 to the proof of sire 1 in the animal model are −0.003
and 0.102, respectively. Using equation [3.8], the contributions from the
different yield records to sire 1 under the sire model are as follows.

Contributions (CONT) from yields for calves 4 and 6 are:

CONT4 = n2(0.082) = 0.010
CONT6 = n2(0.259) = 0.031

where n2 = 2/16.667.
Contribution from yield record for male grand-progeny (calf 7)

through animal 4 (progeny) is:

CONT7 = n3(−0.086) = −0.019

where n3 = 3.667/16.667.
Therefore:

$s i = CONT4 + CONT6 + CONT7 = 0.022

In the sire model the sum of CONT4 and CONT7 is equivalent to the contri-
bution from calf 4 to the sire proof in the animal model. Thus the main dif-
ference in the proof for sire 1 in the two models is due largely to the lower
contribution of calf 6 in the sire model. This lower contribution arises
from the fact that the contribution is only from the yield record in the sire
model while it is from the yield and the progeny of calf 6 in the animal
model.

Similar calculations for sire 3 indicate that the proportionate contribu-
tions from its progeny are −0.088 for calf 5 and 0.047 for calf 8 in the animal
model. However, in the sire model the contributions are −0.037 and 0.051,
respectively, from the yield of these calves. Again, the major difference
here is due to the contribution from calf 5, which contains information
from her offspring (calf 7) in the animal model. The similarity of the contri-
butions of calf 8 to the proof of sire 3 in both models is because it is a
non-parent and the contribution is slightly higher under the sire model due
to the lack of adjustment for the breeding value of the mate.

3.4 Reduced Animal Model

In Section 3.1, the best linear unbiased prediction of breeding value
involved setting up equations for every animal, that is, all parents and
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progeny. Thus the order of the animal equations was equal to the number
of animals being evaluated. If equations were set up only for parents, this
would greatly reduce the number of equations to be solved, especially
since the number of parents is usually less than the number of progeny in
most data sets. Breeding values of progeny can be obtained by back-
solving from the predicted parental breeding values. Quaas and Pollak
(1980) developed the reduced animal model (RAM), which allowed equa-
tions to be set up only for parents in the MME, and breeding values of
progeny are obtained by back-solving from the predicted parental breed-
ing values. This section presents the theoretical background for the RAM
and illustrates its use for the prediction of breeding values.

3.4.1 Defining the model

The application of a RAM involves setting up animal equations for par-
ents only and representing the breeding values of non-parents in terms of
parental breeding value. Thus, for the non-parent i, its breeding value can
be expressed as:

a a a mi s d i= + +1
2 ( ) [3.16]

where as and ad are the breeding values of sire and dam and mi is the
Mendelian sampling. It was shown in Chapter 2, Section 2.2 that:

var(m F Fi s d a) ( . . ( ))= − +05 025 2s

Let F F Fs d= +( )/2, then:

var( )m Fi a= −( . . ( ))05 05 2s
= −05 1 2. ( )F as [3.17]

The animal model applied in Section 3.2 was:

yij = + +p a ei j ij [3.18]

In matrix notation:

y = Xb + Za + e [3.19]

The terms in the above equations have been defined in Section 3.2.
Using [3.16], equation [3.18] can be expressed as:

yij = pi + 1
2as + 1

2ad + mj + eij [3.20]

For non-parents, the terms mj and eijk can be combined to form a single
residual term eijk

* as:

e m eijk j ijk
* = + [3.21]

and:

var( )e m eijk j ijk
* var( ) var( )= +

Using [3.17]:

var( ) ( )*e Fijk a e= − +1
2

2 21 s s
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In general:

var( ) ( )m d Fj j j a= −1 2s [3.22]

where dj equals 1
2 or 3

4 or 1 if both, one or no parents are known,
respectively, and, Fj is the average inbreeding for both parents or, if only
one parent is known, it is the inbreeding coefficient of the known parent.
Fj equals zero when no parent is known. Ignoring inbreeding:

var( ) ( )*e d dijk e j a j e= + = + −s s a s2 2 1 21

Equation [3.20] can be expressed in matrix notation as:

y = Xnb + Z1ap + e* [3.23]

where Xn is the incidence matrix that relates non-parents’ records to fixed
effects, Z1 is an incidence matrix of zeros and halves identifying the
parents of animals and ap is a vector of breeding values of parents.

The application of RAM involves applying the model:

yp = Xpb + Za + e

for parents and the model:

yn = Xnb + Z1ap + e*

for non-parents.
From the above two equations, the model for RAM analysis can be

written as:

y
y

X
X

b
Z
Z

a
e
e

p

n

p

n
p *

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥ + ⎡

⎣
⎢

⎤

⎦
⎥ + ⎡

⎣
⎢

⎤

⎦
⎥

1

If:

X
X
X

W
Z
Z

R
R
R

I 0
0 I

=
p

n

p

n

e

e

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥ =,

1

2

2
and

s

s *

⎡

⎣
⎢

⎤

⎦
⎥ =

+
⎡

⎣
⎢

⎤

⎦
⎥−

I 0
0 I Da

s
1

2
e

then:

var(y) = WApW¢s e
2 + R

var(ap) = A p as 2

where Ap is the relationship matrix among parents and D above is a diago-
nal matrix with elements as defined for dj in equation [3.22].

The mixed model equations to be solved are:

$

$ /
b
a

X R X X R W
W R X W R W A

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′ ′
′ ′ +

⎡

⎣
⎢

⎤− −

− − −

1 1

1 1 1 21 s a ⎦
⎥

′
′

⎡

⎣
⎢

⎤

⎦
⎥

− −

−

1 1

1

X R y
W R y

[3.24]
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Equation [3.24] can also be written as

′ + ′ ′ + ′
′ + ′

− − − −

−

X R X X R X X R Z X R Z
Z R X Z R
p p p n n n p p n n

p p

1 1 1 1
1

1
1 n n p n a

− − − −′ + ′ +
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

1 1
1

1
1

1 21X Z R Z Z R Z A
b
a/

$

$s

′ + ′
′ + ′

⎡

⎣
⎢

⎤

⎦
⎥

− −

− −

X R y X R y
Z R y Z R y
p p p n n n

p p n n

1 1

1
1

1

Multiplying the equations above by Rp gives:

′ + ′ ′ + ′
′ + ′ ′ + ′

− −

−

X X X R X X Z X R Z
Z X Z R X Z Z Z
p p n v n p n v

p v n

1 1
1

1
1

1R Z A
b
a

X y X R y
Z yv

p p n v n

p
− −

−

+
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′ + ′
′ +1

1
1

1

a

$

$ ′
⎡

⎣
⎢

⎤

⎦
⎥−Z R y1

1
v n

[3.25]

where R Dv
− −= +1 11 1/( )a .

3.4.2 An illustration

Example 3.3
The application of RAM using equation [3.24] for the prediction of breed-
ing values is illustrated below with the same data set (Table 3.1) as in
Example 3.1 for the animal model evaluation. The genetic parameters are
s a

2 200= . and s e
2 400= . .

CONSTRUCTING THE MME

First, we need to set up R, the matrix of residual variances, and its inverse.
In the example data set, animals 4, 5 and 6 are parents; therefore the diag-
onal elements in R corresponding to these animals are equal to s e

2, that is,
40.0. Calves 7 and 8 are non-parents; therefore the diagonal elements for
these animals in R are equal to s se i ad2 2+ , assuming that the average
inbreeding coefficients of the parents of these animals equal zero. For
each calf, di equals half because both their parents are known; therefore
r r77 88

1
240 20 50= = + =( ) .

The matrix R for animals with records is:

R = diag(40, 40, 40, 50, 50)

and:

R−1 = diag(0.025, 0.025, 0.025, 0.020, 0.020)

The matrix X is the same as in Section 3.2 and relates records to sex
effects.

Therefore:

′ = ⎡

⎣
⎢

⎤

⎦
⎥−X R X1 0065 0000

0000 0050
. .
. .
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For the matrix W, the rows for parents with records (animals 4, 5 and
6) consist of zeros except for the columns corresponding to these animals,
which contain ones, indicating that they have records. However, the
rows for non-parents with records (animals 7 and 8) contain halves in the
columns that correspond to their parents and otherwise zeros. Thus:

W =

00 00 00 10 00 00
00 00 00 00 10 00
00 00 00 00

. . . . . .

. . . . . .

. . . . 00 10
00 00 00 05 05 00
00 00 05 00 00 05

. .
. . . . . .
. . . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

and:

′ =−W R W1

00 00 00 00 00 00
00 00 00 00 00 00
00 00 0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . .

005 00 00 0005
00 00 00 003 0005 00
00 00 00 0005 003 00
00 00 0005 00 00 003

. .
. . . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

The transpose of the vector of observations, y, is as defined in Section
3.2. The remaining matrices, X¢R−1W, W¢R−1X, X¢R−1y and Z¢R−1y, can
easily be calculated through matrix multiplication since X, R−1, W and y
have been set up. Therefore:

′ =−X R W1 0000 0000 0010 0035 0010 0010
0000 0000 00
. . . . . .
. . . 00 0000 0025 0025. . .

⎡

⎣
⎢

⎤

⎦
⎥

The matrix W¢R−1X is the transpose of X¢R−1W.

′ = ⎡

⎣
⎢

⎤

⎦
⎥ ′ =− −X R y W R y1 10282

0170

0000
0000
0050
0

.

.

.

.

.

.
and

148
0107
0148
.
.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

The LSEs are:

$

$

$

$

$

$

$

$

b

b

a

a

a

a

a

a

1

2

1

2

3

4

5

6

0⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

. . . . . . . .

. .
065 0000 0000 0000 0010 0035 0010 0010

0000 0050 0. . . . . .
. . . .

000 0000 0000 0000 0025 0025
0000 0000 0000 0000 0. . . .
. . . . . .

000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0. .
. . . . . . . .

000 0000
0010 0000 0000 0000 0005 0000 0000 0005
0. . . . . . . .
. .
035 0000 0000 0000 0000 0030 0005 0000

0010 0025 0. . . . . .
. . . .

000 0000 0000 0005 0030 0000
0010 0025 0000 0000 0. . . .

.

.

005 0000 0000 0030

0282
0

1
⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−

170
0000
0000
0050
0148
0107
0148

.

.

.

.

.

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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The relationship matrix is only for parents, that is, animals 1 to 6.
Thus:

A − =

− −

1

1833 0500 0000 0667 0000 1000
0500 2000 050
. . . . . .
. . . 0 0000 1000 1000

0000 0500 1500 0000 1000 0000
. . .

. . . . . .
− −
−

−0667 0000 0000 1333 0000 0000
0000 1000 1000 00
. . . . . .
. . . .− − 00 2000 0000

1000 1000 0000 0000 0000 2000
. .

. . . . . .− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Adding A−11/s a
2 to the W¢R−1W of the least-square equations gives the

MME, which are:

$

$

$

$

$

$

$

$

.b

b

a

a

a

a

a

a

1

2

1

2

3

4

5

6

0065⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

0000 0000 0000 0010 0035 0010 0010
0000 0050 0000

. . . . . . .
. . . 0000 0000 0000 0025 0025

0000 0000 0092 0025 0000
. . . . .

. . . . . − −
−

0033 0000 0050
0000 0000 0025 0100 0025 0000 0

. . .
. . . . . . .050 0050

0010 0000 0000 0025 0080 0000 0050 0005
−

−
.

. . . . . . . .
0035 0000 0033 0000 0000 0097 0005 0000
0010 002
. . . . . . . .
. .

−
5 0000 0050 0050 0005 0130 0000

0010 0025 0050
. . . . . .

. . .
− −

− −0050 0005 0000 0000 0130

02
1

. . . . .

.⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−
82

0170
0000
0000
0050
0148
0107
0148

.

.

.

.

.

.

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The solutions are:

Effects Solutions

Sex
1 4.358
2 3.404

Animal
1 0.098
2 −0.019
3 −0.041
4 −0.009
5 −0.186
6 0.177

The solutions for sex effects and proofs for parents are exactly as
obtained using the animal model in Example 3.1. However, the number of
non-zero elements in the coefficient matrix is 38 compared with 46 for an
animal model in Section 3.2 on the same data set. This difference will be
more marked in large data sets or in data sets where the number of prog-
eny far exceeds the number of parents. This is one of the main advantages
of the reduced animal model, as the number of equations and therefore
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non-zero elements to be stored are reduced. The solutions for non-parents
can be obtained by back-solving, as discussed in the next section.

SOLUTIONS FOR NON-PARENTS

With the reduced animal model, solutions for non-parents are
obtained by back-solving, using the solutions for the fixed effects and
parents. Equation [3.9], derived earlier from the MME for an animal
with its parents, can be used to back-solve for non-parents solutions.
Since R−1 was not factored out of these MME, equation [3.9] can now be
expressed as:

k r r d gi= + − −11 11 1 1/ [3.26]

Solutions for non-parents in Example 3.3 can be solved using equa-
tion 3.9 but with k expressed as in [3.26]. However, because there is a
fixed effect in the model, m k y b a ai c j s d= − − −( . . )05 05 . In Example 3.3,
both parents of non-parents (animals 7 and 8) are known; therefore:

k = 0.025/(0.025 + (2)0.05) = 0.20

Solutions for calves 7 and 8 are:

$ . ( . . ) . ( . . . ( .a7 05 0009 0186 020 35 4358 05 0009= − + − + − − − + −0186. ))
= −0249.

$ . ( . . ) . ( . . . ( . .a8 05 0041 0177 020 50 4358 05 0041 0= − + + − − − + 177))
= 0183.

Again, these solutions are the same for these animals as under the animal
model.

3.4.3 An alternative approach

Note that, if the example data had been analysed using equation [3.25],
the design matrices would be of the following form:

′ = ⎡

⎣
⎢

⎤

⎦
⎥ ′ = ⎡

⎣
⎢

⎤

⎦
⎥X Xp n

1 0 0
0 1 1

1 1
0 0

,

Z including ancestors is:

Z =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

and Z1 is:

Z1
0 0 0 05 05 0
0 0 05 0 0 05

= ⎡

⎣
⎢

⎤

⎦
⎥

. .
. .
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The remaining matrices can be calculated through matrix multiplication.
The MME then are:

$

$

$

$

$

$

$

$

.b

b

a

a

a

a

a

a

1

2

1

2

3

4

5

6

26⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

00 0000 0000 0000 0 400 1 400 0 400 0 400
0000 2000 00

. . . . . . .
. . . 00 0000 0000 0000 1000 1000

0000 0000 3667 1000 00
. . . . .

. . . . . 00 1333 0000 2000
0000 0000 1000 4000 1000 0000

− −
−

. . .
. . . . . . 2000 2000

0 400 0000 0000 1000 3200 0000 2000 02
. .

. . . . . . . .
−

− 00
1 400 0000 1333 0000 0000 3867 0200 0000
0 400 1
. . . . . . . .
. .

−
000 0000 2000 2000 0200 5200 0000

0 400 1000 200
. . . . . .

. . .
− −

− 0 2000 0200 0000 0000 5200−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−

. . . . .

1
11300

6800
0000
0000
2000
5900
4300
5900

.

.

.

.

.

.

.

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

and these give the same solutions as those obtained from equation [3.24].

3.5 Animal Model with Groups

In Example 3.1, there were animals in the pedigree with unknown par-
ents, usually termed base population animals. The use of the relationship
matrix in animal model evaluation assumes that these animals were sam-
pled from a single population with average breeding value of zero and
common variance s a

2. The breeding values of animals in subsequent gen-
erations are usually expressed relative to those of the base animals. How-
ever, if it is known that base animals were actually from populations that
differ in genetic means, for instance, sires from different countries, this
must then be accounted for in the model. In the dairy cattle situation, due
to differences in selection intensity, the genetic means for sires of bulls,
sires of cows, dams of bulls and dams of cows may all be different from
each other. These various subpopulation structures should be accounted
for in the model to avoid bias in the prediction of breeding values. This
can be achieved through a proper grouping of base animals using avail-
able information.

Westell and Van Vleck (1987) presented a procedure for grouping
which has generally been adopted. For instance, if sires have been
imported from several countries over a period of time and their ancestors
are unknown, these sires could be assigned to groups on the basis of the
expected year of birth of the ancestors and the country of origin. The sires
born within a similar time period in a particular foreign country are
assumed to come from ancestors of similar genetic merit. Thus each sire
with one or both parents unknown is initially assigned phantom parents.
Phantom parents are assumed to have had only one progeny each. Within
each of the foreign countries, the phantom parents are grouped by the year
of birth of their progeny and any other factor, such as sex of progeny. In
addition for the dairy cattle situation, the four selection paths – sire of
sires, sire of dams, dam of sires and dam of dams – are usually assumed to
be of different genetic merit and this is accounted for in the grouping
strategy.
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With groups, the model (Thompson, 1979) is:

y h a t g eij j i ik k ij
k

n
= + + +

=
∑

1

[3.27]

where hj = effect of the jth herd, ai = random effect of animal i, gk = fixed
group effect containing the kth ancestor, tik = the additive genetic rela-
tionship between the kth and ith animals and the summation is over all n
ancestors of animal i, and eij = random environmental effect. From the
model, it can be seen that the contribution of the group to the observation
is weighted by the proportion of genes the ancestors in the group passed
on to the animal with a record.

In matrix notation the model can be written as:

y = Xb + ZQg + Za + e [3.28]

where:

Q = TQ*

Q* assigns unidentified ancestors to groups and T, a lower triangular
matrix, is obtained from A = TDT¢ (see Chapter 2, Section 2.2). With this
model the breeding value of an animal k ak( $ )* is obtained as:

$ $ $*a Qg ak k= +

The MMEs are:

′ ′ ′
′ ′ ′

′ ′ ′ ′ ′ ′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

−

X X X Z X ZQ
Z X Z Z A Z ZQ

Q Z X Q Z Z Q Z ZQ
+ 1a

⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
′
′

′ ′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

$

$

$

b
a
g

X y
Z y

Q Z y

Solving the MME above will yield vectors of solutions for a and g, but the
ranking criterion (breeding value) is $ $*a ak k= +Qg for animal k. Modifica-
tion of the mixed model equations (Quaas and Pollak, 1981) and absorp-
tion of the group equations gave the following set of equations, which are
usually solved to obtain $a* directly (Westell et al., 1988):

′ ′
′ ′ +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −

− −

X X X Z 0
Z X Z Z A A

0 A A
nn np

pn pp

1 1

1 1

a a

a a

$b
a Qg

g

X y
Z y

0

$ $

$

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[3.29]

where n is the number of animals and p the number of groups.
Let

A
A A
A A

−
− −

− −
=

⎡

⎣
⎢

⎤

⎦
⎥1

1 1

1 1
nn np

pn pp
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The matrix A−1 is obtained by the usual rules for obtaining the inverse of
the relationship matrix outlined in Chapter 2, Section 2.3.1. A list of
pedigrees, consisting of only actual animals but with unknown ancestors
assigned to groups, is set up. For the ith animal calculate the inverse (bi) of
the variance of Mendelian sampling as:

bi = 4/(2 + number of parents of animal i assigned to groups)

Then add:

bi to the (i,i) element of A−1

− bi i s i d s i d i2 to the ( , ), ( , ), ( , ) and ( , ) elements of 1A −

bi s s s d d s d d4 to the ( , ), ( , ), ( , ) and ( , ) elements of A −1

Thus, for an animal i with both parents assigned to groups:

bi = 4/(2 + 2) = 1

Then add:

1 to the ( , ) element of

to the ( , ), ( ,

i i

i s i

A −

−

1

1
2 d s i d i

s s

), ( , ) and ( , ) elements of

to the ( , )

A −1

1
4 , ( , ), ( , ) and ( , ) elements ofs d d s d d A −1

3.5.1 An illustration

Example 3.4
An animal model evaluation with groups is illustrated below using the
same data set and genetic parameters as in Example 3.1. The aim is to esti-
mate sex effects and predict breeding values for animals and phantom
parents (groups). The model [3.28] and the MME [3.29] are used for the
analysis. The pedigree file for the data set is as follows:

Calf Sire Dam

1 Unknown Unknown
2 Unknown Unknown
3 Unknown Unknown
4 1 Unknown
5 3 2
6 1 2
7 4 5
8 3 6

Assuming that males are of different genetic merit compared to females,
the unknown sires can be assigned to one group (G1) and unknown dams
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to another group (G2). The pedigree file now becomes:

Calf Sire Dam

1 G1 G2
2 G1 G2
3 G1 G2
4 1 G2
5 3 2
6 1 2
7 4 5
8 3 6

Recoding G1 as 9 and G2 as 10:

Calf Sire Dam

1 9 10
2 9 10
3 9 10
4 1 10
5 3 2
6 1 2
7 4 5
8 3 6

SETTING UP DESIGN MATRICES AND MME

The design matrices X and the matrices X¢X, X¢Z, Z¢X, X¢y and Z¢y in the
MME are exactly as in Example 3.1. The MME without addition of the
inverse of the relationship matrix for animals and groups are:

3 0 0 0 0 1 0 0 1 1 0 0
0 2 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

$

$

$

$

$

$

b

b

a

a

a

a

1

2

1

2

3

4

$

$

$

$

$

$

a

a

a

a

g

g

5

6

7

8

1

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

130
68
00
00
00
45
29
39
35
50
00
00

.

.

.

.

.

.

.

.

.

.

.

.

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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Using the procedure outlined above, A−1 for the example data is:

1 2 3 4 5 6 7 8 9 10

1 1.83 0.50 0.00 −0.67 0.00 −1.00 0.00 0.00 −0.50 −0.17
2 0.50 2.00 0.50 0.00 −1.00 −1.00 0.00 0.00 −0.50 −0.50
3 0.00 0.50 2.00 0.00 −1.00 0.50 0.00 −1.00 −0.50 −0.50
4 −0.67 0.00 0.00 1.83 0.50 0.00 −1.00 0.00 0.00 −0.67
5 0.00 −1.00 −1.00 0.50 2.50 0.00 −1.00 0.00 0.00 0.00
6 −1.00 −1.00 0.50 0.00 0.00 2.50 0.00 −1.00 0.00 0.00
7 0.00 0.00 0.00 −1.00 −1.00 0.00 2.00 0.00 0.00 0.00
8 0.00 0.00 −1.00 0.00 0.00 −1.00 0.00 2.00 0.00 0.00
9 −0.50 −0.50 −0.50 0.00 0.00 0.00 0.00 0.00 0.75 0.75

10 −0.17 −0.50 −0.50 −0.67 0.00 0.00 0.00 0.00 0.75 1.08

and A −1a is easily obtained by multiplying every element of A−1 by 2, the
value of a. The matrix A −1a is added to equations for animal and group to
obtain the MME, which are:

$

$

$

$

$

$

$

$

$

$

$

$

b

b

a

a

a

a
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There is dependency in the equations, that is, all effects cannot be
estimated; therefore, the equation for the first group has been set to zero to
obtain the following solutions:

Effects Solutions

Sex
1 5.474
2 4.327

Animal
1 0.780
2 −0.936
3 −0.977
4 −1.287
5 −1.113
6 −0.741
7 −1.354
8 −0.782

Group
9 0.000

10 −1.795
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The animal proofs above are generally lower than those from Example
3.1, the model without groups. In addition, the ranking for animals is also
different. However, the relationship between the two sets of solutions can
be shown by recalculating the vector of solutions for animals using the
group solutions ($g) above and the estimated breeding values ( $ )a from
Example 3.1 as:

â* = â + Qg

where Q = TQ*, as defined earlier.
Assigning phantom parents (M1 to M7) to animals with unknown

ancestors, the pedigree for the example data can be written as:

Calf Sire Dam

1 M1 M2
2 M3 M4
3 M5 M6
4 1 M7
5 3 2
6 1 2
7 4 5
8 3 6

and the matrix T for the pedigree is:

M1 M2 M3 M4 M5 M6 M7 1 2 3 4 5 6 7 8

M1 1.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0

M2 0.000 1.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0

M3 0.000 0.000 1.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0

M4 0.000 0.000 0.000 1.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0

M5 0.000 0.000 0.000 0.000 1.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0

M6 0.000 0.000 0.000 0.000 0.000 1.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0

M7 0.000 0.000 0.000 0.000 0.000 0.000 1.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0

1 0.500 0.500 0.000 0.000 0.000 0.000 0.00 1.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0

2 0.000 0.000 0.500 0.500 0.000 0.000 0.00 0.00 1.00 0.00 0.0 0.0 0.0 0.0 0.0

3 0.000 0.000 0.000 0.000 0.500 0.500 0.00 0.00 0.00 1.00 0.0 0.0 0.0 0.0 0.0

4 0.250 0.250 0.000 0.000 0.000 0.000 0.50 0.50 0.00 0.00 1.0 0.0 0.0 0.0 0.0

5 0.000 0.000 0.250 0.250 0.250 0.250 0.00 0.00 0.50 0.50 0.0 1.0 0.0 0.0 0.0

6 0.250 0.250 0.250 0.250 0.000 0.000 0.00 0.50 0.50 0.00 0.0 0.0 1.0 0.0 0.0

7 0.125 0.125 0.125 0.125 0.125 0.125 0.25 0.25 0.25 0.25 0.5 0.5 0.0 1.0 0.0

8 0.125 0.125 0.125 0.125 0.250 0.250 0.00 0.25 0.25 0.50 0.0 0.0 0.5 0.0 1.0
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The matrices Q*, which assigns phantom parents to groups, and Q are:

Q * =

⎡
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⎢
⎢
⎢
⎢
⎢
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⎢
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1 0
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1 0
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. .
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Therefore the vector of solutions using the estimated breeding values
from Example 3.1 is:

â* = =

−
−
−
−

−

$ $

.

.
.
.
.
.
.
.

a Qg+
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These solutions are similar to those obtained in the model with
groups. The slight differences are due to differences in sex solutions in
the two examples and this is explained later. This indicates that, when the
solutions from the model without groups are expressed relative to the
group solutions, similar solutions are obtained to those in the model with
groups. Thus, the differences between the solutions in Examples 3.1 and
3.4 are due to the fact that the solutions in the former are expressed rela-
tive to base animals assumed to have an average breeding value of zero,
while in the latter solutions are relative to the group solutions, one of
which is lower than zero.

The inclusion of groups also resulted in a larger sex difference compared
with Example 3.1. The solution for sex effect i can be calculated using
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equation [3.5]. For instance, the solution for male calves in Example 3.4 is:
$ [( . . . ) ( . . . )]/ .b1 45 35 50 1287 1354 0782 3 5474= + + − − + − + − =

Since y ij
j

∑ in equation [3.5] is the same in both examples, differences in

$aij
j

∑ between the sexes in both models would result in differences in the

linear function of b. The difference between average breeding values of
male and females calves is −0.02 and −0.214, respectively, in Examples
3.1 and 3.4. The larger difference in the latter accounted for the higher sex
difference in Example 3.4. Males had a lower breeding value in Example
3.4 due to the higher proportionate contribution of group two to their
solutions (see the matrix Q above).

The basic principles involved in the application of BLUP for genetic
evaluations and the main assumptions have been covered in this chapter,
and its application to more complex models involves an extension of
these principles. Equation [3.1] is a very general model and a could
include random animal effects for several traits (multivariate model), ran-
dom environmental effects, such as common environmental effects affect-
ing animals that are reared together, maternal effects (maternal model),
non-additive genetic effects, such as dominance and epistasis (non-
additive models) and repeated data on individuals (random regression
model). The extension of the principles discussed in this chapter under
these various models constitutes the main subject area of the subsequent
chapters in the text.
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4 Best Linear Unbiased Prediction
of Breeding Value: Models with
Random Environmental Effects

In some circumstances, environmental factors constitute an important
component of the covariance between individuals such as members of a
family reared together (common environmental effects) or between the
records of an individual (permanent environmental effects). Such envi-
ronmental effects are usually accounted for in the model to ensure accu-
rate prediction of breeding. This chapter deals with models that take into
account these two main types of environmental effects in genetic
evaluations.

4.1 Repeatability Model

The repeatability model has been employed for the analysis of data when
multiple measurements on the same trait are recorded on an individual,
such as litter size in successive pregnancies or milk yield in successive
lactations (Interbull, 2000). The details of the assumptions and the com-
ponents of the phenotypic variance have been given in Section 1.2.2.
Briefly, the phenotypic variance comprises the genetic (additive and
non-additive) variance, permanent environmental variance and tempo-
rary environmental variance. For an animal, the repeatability model usu-
ally assumes a genetic correlation of unity between all pairs of records,
equal variance for all records and equal environmental correlation
between all pairs of records. In practice, some of these assumptions do not
hold in the analysis of real data. A more appropriate way of handling
repeated measurements over time is by fitting a random regression model
or a covariance function, and this is discussed in Chapter 8. This section
has therefore been included to help illustrate the evolution of the model
for the analysis of repeated records over time. The phenotypic structure

© R.A. Mrode 2005. Linear Models for the Prediction of Animal Breeding Values,
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for three observations of an individual under this model could be written
(Quaas, 1984) as:

var
1

2

3

1y

y

y

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
+ + + +s s s s s s s

s
t pe g pe g pe g
2 2 2 2 2 2 2

pe g t pe g pe g

pe g pe g t

2 2
2
2 2 2 2 2

2 2 2 2
3
2

+ + + +
+ + +

s s s s s s

s s s s s s pe g
2 2+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥s

with: sti
2 = temporary environmental variance specific to record i;

s pe
2 = covariance due to permanent environmental effects (variances and

covariances are equal); and s g
2 = genetic covariance (variances and co-

variances are equal). The correlation between records of an individual
referred to as repeatability is ( )/s s sg pe y

2 2 2+ . Genetic evaluation under this
model is concerned not only with predicting breeding values but also per-
manent environmental effects.

4.1.1 Defining the model

The repeatability model is usually of the form

y = Xb + Za + Wpe + e [4.1]

where y = vector of observations, b = vector of fixed effects, a = vector of
random animal effects, pe = vector of random permanent environmental
effects and non-additive genetic effects, e = vector of random residual
effect, and X, Z and W are incidence matrices relating records to fixed,
animal and permanent environmental effects, respectively.

Note that the vector a only includes additive random animal effects;
consequently, non-additive genetic effects are included in the pe term. It
is assumed that the permanent environmental effects and residual effects
are independently distributed with means of zero and variance s pe

2 and
s e

2, respectively; therefore:

var(pe) = Is pe
2

var(e) = Is e
2 = R

var(a) = As a
2

and:

var(y) = ZAZ¢s a
2 + WIs pe

2 W¢ + R

The mixed model equations for the best linear unbiased estimator
(BLUE) of estimable functions of b and for the best linear unbiased predic-
tion (BLUP) of a and pe are:

$

$

$

b
a
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X R X X R Z X R W
Z R X Z R Z
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⎥
⎥
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′ ′
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However, the mixed model equations (MME) with R�1 factored out from
the above equations give the following equations, which are easier to set
up:

$

$

$

b
a

pe

X X X Z X W
Z X Z Z A Z W

W X W Z

⎡

⎣

⎢
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′ ′ ′
′ ′ + ′
′ ′

−1
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′ +
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′
′
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⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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−

W W I

X y
Z y
W ya2

1

[4.2]

where:

a s1
2= e /s a

2 and a2 = s e
2/s pe

2 .

4.1.2 An illustration

Example 4.1
For illustrative purposes, assume a single dairy herd with the following
data structure for six cows:

Cow Sire Dam Parity HYS Fat yield (kg)

4 1 2 1 1 201
4 1 2 2 3 280
5 3 2 1 1 150
5 3 2 2 4 200
6 1 5 1 2 160
6 1 5 2 3 190
7 3 4 1 1 180
7 3 4 2 3 250
8 1 7 1 2 285
8 1 7 2 4 300

HYS, herd–year–season.

It is assumed that s a
2 = 20.0, s e

2 = 28.0 and s pe
2 = 12.0, giving a

phenotypic variance (s y
2) of 60. From the given parameters, a1 = 1.40,

a2 = 2.333 and repeatability is (s sa pe
2 2+ )/s y

2 = (20 + 12)/60 = 0.53. The
aim is to estimate the effects of lactation number and predict breeding val-
ues for all animals and permanent environmental effects for cows with
records. The above genetic parameters are proportional to estimates
reported by Visscher (1991) for fat yield for Holstein Friesians in the UK
for the first two lactations using a repeatability model. Later, in Section
5.5, this data set is reanalysed using a multivariate model assuming an
unequal design with different herd–year–season (HYS) effects defined for
each lactation, using the corresponding multivariate genetic parameter esti-
mates of Visscher (1991).

BLUP: Models with Random Environmental Effects 73

87
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:21:49 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



SETTING UP THE DESIGN MATRICES

The transpose of the matrix X, which relates records to HYS and parity, is:

′X =

1 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 1
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

The first four rows of X¢ relate records to HYS effects and the last two rows
to parity effects.

Considering only animals with records, Z¢ and W¢ are equal and, for
the example data set:

′Z =

1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Each row of Z¢ corresponds to each cow with records. The matrices Z¢Z
and W¢W are both diagonal and equal and Z¢Z is:

Z¢Z = diag(2, 2, 2, 2, 2)

Note, however, that it is necessary to augment Z¢Z by three columns and
rows of zeros to account for animals 1 to 3, which are ancestors. The remain-
ing matrices in the MME apart from A−1 can easily be calculated through
matrix multiplication. The inverse of the relationship matrix (A−1) is:

A − =

− − −

1

250 050 000 100 050 100 050 100
050 200 05
. . . . . . . .
. . . 0 100 100 000 000 000

000 050 200 050 100 000 1
− −

− −
. . . . .

. . . . . . . .

. . . . . . . .

. .

00 000
100 100 050 250 000 000 100 000
050 10

− − −
− 0 100 000 250 100 000 000

100 000 000 000 100 2
− −

− −
. . . . . .

. . . . . . . .

. . . . . . . .

.

00 000 000
050 000 100 100 000 000 250 100
10

− − −
− 0 000 000 000 000 000 100 200. . . . . . .−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

and A −1a1 is added to the Z¢Z to obtain the mixed model equations.
The MME are too large to be shown. There is dependency in the MME

because the sum of equations for HYS 1 and 2 equals that of parity 1 and
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the sum of HYS 3 and 4 equals that for parity 2. The equations for HYS 1
and 3 were set to zero to obtain the following solutions by direct inversion
of the coefficient matrix:

Effects Solutions

HYS
1 0.000
2 44.065
3 0.000
4 0.013

Parity
1 175.472
2 241.893

Animal
1 10.148
2 –3.084
3 –7.063
4 13.581
5 –18.207
6 –18.387
7 9.328
8 24.194

Permanent environment
4 8.417
5 –7.146
6 –17.229
7 –1.390
8 17.347

The fixed-effect solutions for parity indicate that yield at second lactation
is higher than that at first, which is consistent with the raw averages. From
the MME, the solution for level i of the nth fixed effect can be calculated as:

$ $ $ $bin inf= − − −∑∑∑ ∑
=

y b a peinj ink
kjf

inl
l

i

in

1

diag

/diag n [4.3]

where yinf is the record for animal f in level i of the nth fixed effect, diagin is
the number of observations for level i of the nth fixed effect, binj, âink and
peinl are solutions for levels j, k and l of any other fixed effect, random ani-
mal and permanent environmental effects, respectively, within level i of
the nth fixed effect. Thus the solution for level two of HYS effect is:

$b21 = [445 – (2 $b12) – (â6 + â8) – ( $pe6 + $pe8)]/2
= [445 – 2(175.472) – 5.807 – (0.118)]/2
= 44.065
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Breeding values for animals with a repeatability model can also be
calculated using equation [3.8], except that yield deviation (YD) is now
yield corrected for the appropriate fixed effects, permanent environmen-
tal effect and averaged. Thus, for animal 4:

â4 = n1[(â1 + â2)/2] + n2[((y41 – $b1 – $b5 – pe4) + (y42 – $b3 – $b5 – $pe4))/2]
+ n3(2â7 – â3)

where yji is yield for cow j in lactation i, n1 = 2.8/5.5, n2 = 2/5.5 and
n3 = 0.7/5.5, and 5.5 = the sum of the numerator of n1, n2 and n3.

â4 = n1(3.532) + n2[((201 – 0.0 – 175.472 – 8.417)
+ (280 – 0.0 – 241.893))/2] + n3(18.656 – (–7.063))

= 13.581

The higher breeding value for sire 1 compared with sire 3 is due to the
fact that on average the daughters of sire 1 were of higher genetic merit
after adjusting for the breeding values of mates. The very high breeding
value for cow 8 results from the high parent average breeding value and
she has the highest yield in the herd, resulting in a large YD.

The estimate of pe for animal i could be calculated as:

$ $ $ ( )pe y a mi if
f

mi

ij
j

ik
k

i= − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+∑ ∑ ∑b a2 [4.4]

where mi is the number of records for animal i and other terms are as
defined in [4.3]. Thus, for animal 4:

$pe4 = [(201 – 0.0 – 175.472 – 13.581)
+ (280 – 0.0 – 241.893 – 13.581)]/(2 + 2.333)

= 8.417

The estimate of permanent environment effect for an animal repre-
sents environmental influences and non-additive genetic effect, which
are peculiar to the animal and affect its performance for life. These envi-
ronmental influences could either be favourable – for instance, animal 8
has the highest estimates of pe and this is reflected by her high average
yield – or could reduce performance (for example, cow 6 has a very nega-
tive estimate of pe and low average yield). A practical example of such
permanent environment effect could be the loss of a teat by a cow early
in life due to infection. Thus differences in estimates of pe represent per-
manent environmental differences between animals and could assist the
farmer in addition to the breeding value in selecting animals for future
performance in the same herd. The sum of breeding value and perma-
nent environment effect (âi + $pei) for animal i is termed the probable
producing ability (PPA) and represents an estimate of the future
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performance of the animal in the same herd. If the estimate of the
management level (M) for animal i is known, its future record (yi) can be
predicted as:

yi = M + PPA

This could be used as a culling guide.

4.1.3 Calculating daughter yield deviations

As indicated in Section 3.2.2, daughter yield deviation (DYD) is com-
monly calculated for sires in dairy cattle evaluations. The calculation of
DYD for sire 1 in Example 4.1 is hereby illustrated.

First, the yield deviations for the daughters (cows 4, 6 and 8) of sire 1
are calculated. Thus, for cow i, YDi = (Z¢Z)−1 Z′(yi � X $b � W $pe). Therefore:

YD4 = 1
2[(201 – 175.472 – 0 – 8.417)

+ (280 – 241.893 – 0 – 8417)] = 23.4005

YD6 = 1
2[(160 – 175.472 – 44.065 – (–17.229))

+ (190 – 241.893 – 0 – (–17.229)] = –38.486

YD8 = 1
2[(285 – 175.472 – 44.065 – 17.347)

+ (300 – 241.893 – 0.013 – 17.347)] = 44.432

Both parents of these daughters are known; therefore, n2prog = 2/(2 +
2a1) = 0.4167 and uprog = 1 for each daughter. Using equation [3.12], DYD
for sire 1 is:

DYD1 = [(u(4)n2(4)(2YD4 – â2) + u(5)n2(6)(2YD6 – â5)

+ u(8)n2(8)(2YD8 − +
⎛

⎝
⎜

⎞

⎠
⎟∑$ )] ( )a u nprog prog7 2

3

DYD1 = [(1)(0.4167)((2(23.4005)) – (–3.084)) + (1)0.4167((2(–38.486))
– (–18.207)) + (1)0.4167((2(44.432)) – 9.328)]/(3(1)(0.4167))

= 23.552

Calculating the proof of sire 1 using equation [3.13] and a DYD of 23.552
gives a breeding value of 9.058. It is slightly lower than the breeding value
of 10.148 from solving the MME, as the contribution of the granddaughter
through cow 4 is not included.

4.2 Model with Common Environmental Effects

Apart from the resemblance between records of an individual due to per-
manent environmental conditions, discussed in Section 4.1, environmental
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circumstances can also contribute to the resemblance between relatives.
When members of a family are reared together, such as litters of pigs, they
share a common environment and this contributes to the similarity
between members of the family. Thus there is an additional covariance
between members of a family due to the common environment they share
and this increases the variance between different families. The environ-
mental variance may be partitioned therefore into the between-family or
between-group component (s c

2), usually termed the common environ-
ment, which causes resemblance between members of a family, and the
within-family or within-group variance (s e

2). Sources of common environ-
mental variance between families may be due to factors such as nutrition
and/or climatic conditions. All sorts of relatives are subject to an environ-
mental source of resemblance, but most analyses concerned with this type
of variation in animal breeding tend to account for the common environ-
ment effects associated with full-sibs or maternal half-sibs, especially in
pig and chicken studies.

4.2.1 Defining the model

Genetic evaluation under this model is concerned with prediction of
breeding values and common environmental effects and the phenotypic
variance may be partitioned into:

1. Additive genetic effects resulting from additive genes from parents.
2. Common environmental effects affecting full-sibs or all offspring of
the same dam. In the case of full-sibs, it may be confounded with
dominance effects peculiar to offspring of the same parents. Further
explanation is given later on the components of the common environmen-
tal effect.
3. Random environmental effects.

In matrix notation, the model, which is similar to [4.1], is:

y = Xb + Za + Wc + e [4.5]

where all terms are as given in [4.1] except c, which is the vector of com-
mon environmental effects, and W now relates records to common envi-
ronmental effects.

It is assumed that common environmental and residual effects are
independently distributed with means of zero and variance s c

2 and s e
2,

respectively. Thus var(c) = Is c
2, var(e) = Is e

2 and var(a) = As a
2.

The mixed model equations for the BLUP of a and c and BLUE of esti-
mable functions of b are exactly the same as [4.2] but with a = s1 e

2/s a
2 and

a = s2
2
e /s c

2.
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4.2.2 An illustration

Example 4.2
Consider the following data set on the weaning weight of piglets which
are progeny of three sows mated to two boars:

Piglet Sire Dam Sex* Weaning weight (kg)

6 1 2 1 90
7 1 2 2 70
8 1 2 2 65
9 3 4 2 98

10 3 4 1 106
11 3 4 2 60
12 3 4 2 80
13 1 5 1 100
14 1 5 2 85
15 1 5 1 68

*1 = male, 2 = female (throughout chapter)

The objective is to predict breeding values for all animals and common
environmental effects for full-sibs. Given that s a

2 = 20, s c
2 = 15 and

s e
2 = 65, then s y

2 = 100, a1 = 3.25 and a2 = 4.333.
The model for the analysis is that presented in [4.5] and, as mentioned

earlier, the mixed model equations for the BLUP of a and c and BLUE of
estimable functions of b are as given in [4.2], using a1 and a2 as defined
above.

SETTING UP THE DESIGN MATRICES

The transpose of the matrix X, which relates records to sex effects in this
example, is:

′ ⎡

⎣
⎢

⎤

⎦
⎥X =

1 0 0 0 1 0 0 1 0 1
0 1 1 1 0 1 1 0 1 0

and Z = I, excluding parents. The transpose of matrix W, which relates
records to full-sibs, is:

′
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

W =
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
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The MME can be set up as discussed in Example 4.1. The solutions to
the MMEs by direct inversion of the coefficient matrix are:

Effects Solutions

Sex
1 91.493
2 75.764

Animal
1 –1.441
2 –1.175
3 1.441
4 1.441
5 –0.266
6 –1.098
7 –1.667
8 –2.334
9 3.925

10 2.895
11 –1.141
12 1.525
13 0.448
14 0.545
15 –3.819

Common environment
2 –1.762
4 2.161
5 –0.399

The equations for the solution of the i level of fixed, animal and com-
mon environmental effects under this model are the same as those given
for fixed [4.3], animal and permanent environmental effects [4.4], respec-
tively, in Example 4.1. The inclusion of common environmental effects in
the model allows for accurate prediction of breeding values of animals.
Assuming each dam reared her progeny and full-sib families were kept
under similar environmental conditions, the estimates of common envi-
ronmental effects indicate that dam 4 provided the best environment for
her progeny compared with dams 2 and 5. Also, dam 4 has the highest
breeding value among the dams and would therefore be the dam of first
choice, whether selection is for dams of the next generation on the basis of
breeding value only or selection is for future performance of the dams in
the same herd, which will be based on some combination of breeding
value and estimate of common environmental effect.

The environmental covariance among full-sibs or maternal half-sibs
might be due to influences from the dam (mothering ability or maternal
effect); therefore, differences in mothering ability among dams would
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cause environmental variance between families. For instance, resem-
blance among progeny of the same dam in body weight could be due to
the fact that they share the same milk supply, and variation in milk yield
among dams would result in differences between families in body weight.
This variation in mothering ability of dams has a genetic basis and, to
some degree, is due to genetic variation in some character of the dams. In
Chapter 6, the genetic component of maternal effect is examined and the
appropriate model that accounts for the genetic component in genetic
evaluation is presented.
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5 Best Linear Unbiased
Prediction of Breeding Value:
Multivariate Models

Selection of livestock is usually based on a combination of several traits of
economic importance that may be phenotypically and genetically related.
Such traits may be combined into an index on which animals are ranked.
A multiple trait evaluation is the optimum methodology to evaluate
animals on these traits since it accounts for the relationship between
them. A multiple trait analysis involves the simultaneous evaluation of
animals for two or more traits and makes use of the phenotypic and
genetic correlations between the traits. The first application of best
linear unbiased prediction (BLUP) for multiple trait evaluation was by
Henderson and Quaas (1976).

One of the main advantages of multivariate BLUP (MBLUP) is that it
increases the accuracy of evaluations. The gain in accuracy is dependent
on the absolute difference between the genetic and residual correlations
between the traits. The larger the differences in these correlations, the
greater the gain in accuracy of evaluations (Schaeffer, 1984; Thompson
and Meyer, 1986). When, for instance, the heritability, genetic and envi-
ronmental correlations for two traits are equal, multivariate predictions
are equivalent essentially to those from univariate analysis for each trait.
Moreover, traits with lower heritabilities benefit more when analysed
with traits with higher heritabilities in a multivariate analysis. Also, there
is an additional increase in accuracy with multivariate analysis resulting
from better connections in the data due to residual covariance between
traits (Thompson and Meyer, 1986).

Additionally, in some cases one trait is used to decide whether animals
should remain in the herd and be recorded for other traits. For instance,
only calves with good weaning weight may be allowed the chance to be
measured for yearling weight. A single trait analysis of yearling weight
will be biased since it does not include information on the weaning
weight on which the selection was based. This is often called culling bias.

© R.A. Mrode 2005. Linear Models for the Prediction of Animal Breeding Values,
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However, a multi-trait analysis on weaning and yearling weight can elimi-
nate this bias. Thus MBLUP accounts for culling selection bias.

One of the disadvantages of a multiple trait analysis is the high com-
puting cost. The cost of multiple analysis of n traits is more than the cost
of n single analyses. Secondly, a multiple trait analysis requires reliable
estimates of genetic and phenotypic correlations among traits and these
may not be readily available.

In this chapter MBLUP involving traits affected by the same effects
(equal design matrices) and situations in which different traits are
affected by different factors (non-identical design matrices) are discussed.
Approximations of MBLUP when design matrices are equal with or with-
out missing records are also examined.

5.1 Equal Design Matrices and No Missing Records

Equal design matrices for all traits imply that all effects in the model affect
all traits in the multivariate analysis and there are no missing records for
any trait.

5.1.1 Defining the model

The model for a multivariate analysis resembles a stack of the univariate
models for each of the traits. For instance, consider a multivariate analy-
sis for two traits, with the model for each trait of the form given in [3.1],
that is for trait 1:

y X b Z a e1 1 1 1 1 1= + +

and for trait 2:

y X b Z a e2 2 2 2 2 2+ + +

If animals are ordered within traits, the model for the multivariate analy-
sis for the two traits could be written as:

y
y

X 0
0 X

b
b

Z 0
0 Z

a
a

1

2

1

2

1

2

1

2

1

2

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ + ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ + ⎡

⎣
⎢

⎤

⎦
⎥

e
e

1

2
[5.1]

where yi = vector of observations for the ith trait, bi = vector of fixed
effects for the ith trait, ai = vector of random animal effects for the ith trait,
ei = vector of random residual effects for the ith trait, and Xi and Zi are
incidence matrices relating records of the ith trait to fixed and random
animal effects, respectively.
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It is assumed that

var

a

a

e

e

g g

g g

r r

1

2

1

2

11 12

21 22

11

0 0
0 0

0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

A A
A A

12

21 220 0 r r

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

where G = additive genetic variance and covariance matrix for animal
effect with each element defined as; g11 = additive genetic variance for
direct effects for trait 1; g12 = g21 = additive genetic covariance between
both traits; g22 = additive genetic variance for direct effects for trait 2; A
is the relationship matrix among animals; and, R = variance and
covariance matrix for residual effects.

The mixed model equations (MME) are of the same form as in Section
3.1, and these are:

′ ′ ′
′ ′ + ⊗

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥

− −

− − − −

X R X X R Z
Z R X Z R Z A G

b
a1

1 1

1 1 1

$

$ ⎥
=

′
′

⎡

⎣
⎢

⎤

⎦
⎥

−

−

X R y
Z R y

1

1
[5.2]

where:

X
X 0

0 X
Z

Z 0
0 Z

b b
b

a= ⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2

1

2

1

2

, , ,$
$

$
$ =

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

$

$

a
a

y
y
y

11

2 2
and

Writing out the equations for each trait in the model separately, the MME
becomes:

$

$

$

$

b
b
a
a

X R X X R X X R Z1

2

1

2

1
11

1 1
12

2 1
11⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

′ ′ ′ 1 1
12

2

2
12

1 2
22

2 2
21

1 2
22

2

1
11

1

′
′ ′ ′ ′
′ ′

X R Z
X R X X R X X R Z X R Z
Z R X Z R X Z R Z A g Z R Z A g
Z R X Z R

1
12

2 1
11

1
1 11

1
12

2
1 12

2
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1 2
2

′ + ′ +
′ ′

− −

2
2 2

21
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1 21
2
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1 22

1

X Z R Z A g Z R Z A g′ + ′ +

⎡

⎣
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⎢
⎢
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⎤
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⎥
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X R y X R y
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1
11

1 2
12
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2
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1
11

1 1
12
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2
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2′ + ′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Z R y Z R y

[5.3]

where gij are elements of G−1. It should be noted that if R12, R21, g12 and g21

were set to zero, the matrices in the equations above reduce to the usual
ones computed when carrying out two single trait analyses since the two
traits become uncorrelated and there is no flow of information from one
trait to the other.

5.1.2 An illustration

Example 5.1
Assume that the data in Table 5.1 are the pre-weaning gain (WWG) and
post-weaning gain (PWG) for five beef calves. The objective is to estimate
sex effects for both traits and to predict breeding values for all animals
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using a MBLUP analysis. Assume that the additive genetic covariance (G)
matrix is:

WWG
PWG

20 18
18 40

⎡

⎣
⎢

⎤

⎦
⎥

and the residual covariance matrix (R) is:

WWG
PWG

40 11
11 30

⎡

⎣
⎢

⎤

⎦
⎥

The inverses of G and R are:

G R− −=
−

−
⎡

⎣
⎢

⎤

⎦
⎥ =

−1 10084 0038
0038 0042

0028 0010. .
. .

. .
and

−
⎡

⎣
⎢

⎤

⎦
⎥0010 0037. .

SETTING UP THE DESIGN MATRICES

The matrices X1 and X2 relate records for WWG and PWG, respectively,
to sex effects. Both matrices are exactly the same as X in Section 3.2.1.
Considering only animals with records, Z1 and Z2 relate records for
WWG and PWG to animals, respectively. Both matrices are identity
matrices since animals have only one record each for WWG and PWG.
The matrix y is a vector of observations for WWG (y1) and PWG (y2).
Thus its transpose is:

′ ′ ′y y y= [ ] = [ ]1 2 45 29 39 35 50 68 50 68 60 75. . . . . . . . . .

The other matrices in the MME can then easily be calculated from the
design matrices and vector of observations through matrix multiplication.
Examples of some blocks of equations are given below.

From equations [5.2] and [5.3], the fixed effects by fixed effects block
of equations for both traits in the coefficient matrix of the MME is:

′ =
′ ′
′ ′

⎡

⎣
⎢

⎤

⎦
⎥ =−X R X

X R X X R X
X R X X R X

1 1
11

1 1
12

2

2
21

1 2
22

2

008. 4 0000 003 000
000 0056 000 002
003 000 0101 00

. . .
. . . .
. . . .

−
−

− 0
000 002 000 0074. . . .−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Calf Sex Sire Dam WWG PWG

4 Male 1 – 4.5 6.8
5 Female 3 2 2.9 5.0
6 Female 1 2 3.9 6.8
7 Male 4 5 3.5 6.0
8 Male 3 6 5.0 7.5

WWG, pre-weaning gain; PWG, post-weaning gain.

Table 5.1. Pre-weaning gain (kg) and post-weaning gain (kg)
for five beef calves.
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The right-hand side for the levels of sex effects for both traits is:

′ =
′ + ′
′ + ′

⎡

⎣
⎢

⎤

⎦
⎥ =−X R y

X R y X R y
X R y X R y

1 1
11

1 2
12

2

2
21

1 2
22

2

0.364 0203
0190 0118
0130 0751
0068 0437

+ −
+ −

− +
− +

( . )
. ( . )
. .
. .

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The inverse of the relationship matrix for the example data is the same
as that given in Example 3.1. The matrices A −1 11g , A −1 12g , A−1g21 and
A −1 22g are added to Z¢1R11Z1, Z¢1R12Z2, Z′

2R21Z1 and Z¢2R22Z2, respec-
tively, to obtain the MME. For example, the matrix Z¢1R12Z2 + A−1g12 is:

′ + =

− −

−Z R Z A1
12

2
1 12

0069 0019 0000 0025 0000 0038 0

g

. . . . . . .000 0000
0019 0076 0019 0000 0038 0038 0000 000

.
. . . . . . . .− − − 0

0000 0019 0076 0000 0038 0019 0000 0038
0025 0
. . . . . . . .
.

− − −
. . . . . . .

. . .
000 0000 0080 0019 0000 0038 0000

0000 0038 003
− −

8 0019 0105 0000 0038 0000
0038 0038 0019 0000 0

− −
−

. . . . .
. . . . . . . .
. . . . . .

000 0105 0000 0038
0000 0000 0000 0038 0038 0000

−
−

−
0086 0000

0000 0000 0038 0000 0000 0038 0000 00
. .

. . . . . . . . 86

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The MME have not been presented because they are too large, but solving
the MME by direct inversion of the coefficient matrix gives the solutions
shown below. See also the solutions from a univariate analysis of each
trait.

Effects

Multivariate analysis
traits

Univariate analysis
traits

WWG PWG WWG PWG

Sex*
1 4.361 6.800 4.358 6.798
2 3.397 5.880 3.404 5.879

Animal
1 0.151 0.280 0.098 0.277
2 −0.015 −0.008 −0.019 −0.005
3 −0.078 −0.170 −0.041 −0.171
4 −0.010 −0.013 −0.009 −0.013
5 −0.270 −0.478 −0.186 −0.471
6 0.276 0.517 0.177 0.514
7 −0.316 −0.479 −0.249 −0.464
8 0.244 0.392 0.183 0.384

*1 = male, 2 = female (throughout chapter)

The differences between the solutions for males and females for WWG
and PWG in the multivariate analysis are more or less the same as those
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obtained in the univariate analyses of both traits. The solutions for fixed
effects in the multivariate analysis from the MME can be calculated as:

$

$
b

b

n r n r

n r n r

yj

j

j j

j j

1

2

11 12

21 22

1

1 1⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

−
−R j j j

j j j

a g a

y g a a
. . .

. . .

− −
− −

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
12

2

2
21

1 2
[5.4]

where yij. and $ .aij are the sums of observations and estimated breeding val-
ues, respectively, for calves for trait i in sex subclass j, $bij is the solution
for trait i in sex subclass j and nj is the number of observations for sex
subclass j. Using equation [5.4], the solutions for sex effects for males for
WWG and PWG are:

$

$
b

b

r r

r r

r r

r
11

21

11 12

21 22

1 11 12

21

3 3
3 3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

−

r

g

g22

12

21

130 0082 010
203 0082

⎡

⎣
⎢

⎤

⎦
⎥

− − −
− − −
. ( . ) ( . )

. ( . ) (−
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

010. )

= ⎡

⎣
⎢

⎤

⎦
⎥

4361
6800
.
.

5.1.3 Partitioning animal evaluations from multivariate analysis

An equation similar to [3.8] for the partitioning of evaluations from
multivariate models was presented by Mrode and Swanson (2004) in the
context of a random regression model (see Chapter 7). Since the yield
records of animals contribute to the breeding values through the vector
of yield deviations (YD), equations for calculating YD are initially pre-
sented. From equation [5.2], the equations for the breeding values of ani-
mals are:

( )$ ( $ )′ + ⊗ = ′ −− − − −Z R Z A G a Z R y Xb1 1 1 1

Therefore:

( )$ ( )′ + ⊗ = ′− − − −Z R Z A G a Z R Z YD1 1 1 1 [5.5]

with:

YD Z R Z Z R y Xb= ′ ′ −− − −( ) ( ( $ ))1 1 1 [5.6]

Just as in the univariate model, YD is a vector of the weighted average of a
cow’s yield records corrected for all fixed effects in the model.

Transferring the left non-diagonal terms of A−1 in equation [5.5] to the
right side of the equation (VanRaden and Wiggans, 1991) gives:

( )$ ( $ $ ) (′ + = + + ′− − −Z R Z G a G a a Z R1 1 1a aanim anim par sire dam
−1Z YD)

+ −− ∑G a a1 05aprog prog mate( . $ )

where apar = 1 2
3, or 1

2 if both, one or neither parents are known, respec-
tively, and aprog = 1 if the animal’s mate is known and 2

3 if unknown.
Note that a a aanim par prog= +2 05. .
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The above equation can be expressed as:

( )$ ( ) ( )′ + = + ′− − − −Z R Z G a G PA Z R Z YD1 1 1 12a aanim anim par

+ −− ∑05 21. ( $ $ )G a aaprog prog mate [5.7]

where PA = parent average.
Pre-multiplying both sides of the equation by ( )′ +− − −Z R Z G1 1 1aanim

gives:

$a W PA W YD W PCanim = 1 2 3+ + [5.8]

with:

PC a a= −∑ ∑a aprog prog mate prog( $ $ )2

The weights W1, W2 and W3 = I, with W1 = (DIAG)�12G�1apar, W2 = (DIAG)−1

(Z¢R−1Z), and W3 = (DIAG)−10.5G−1Saprog, where (DIAG) = (Z¢R−1Z + G−1aanim).
Equation [5.8] is similar to [3.8] but the weights are matrices of the order
of traits in the multivariate analysis. Equation [5.8] is illustrated below
using calf 8 in Example 5.1.

Since Z = I for calf 8, then [5.6] becomes YD = RR−1(y − Xb) = (y − Xb).
Thus:

YD

YD
y b

y b

81

82

81 1

82 2

50 4361
75 6

⎛
⎝
⎜

⎞
⎠
⎟ = −

−

⎛

⎝
⎜

⎞

⎠
⎟ =

−
−

$

$
. .
. .

.

.800
0639
0700

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟

Both parents of calf 8 are known, therefore:

DIAG R G8
1 12

01958 00858
00858 01211

= + =
−

−
⎛
⎝
⎜

⎞
⎠
⎟− − . .

. .

and:

W DIAG G1
1 12

08476 01191
00237 06092

= =
−

−
⎛
⎝
⎜

⎞
⎠
⎟− −( )

. .
. .

and

W I W2 1
01524 01191
00237 03908

= − = ⎛
⎝
⎜

⎞
⎠
⎟

. .

. .

Then, from [5.8]:

$

$

a

a

PA

PA

YD

YD
81

82
1

81

82
2

81

82

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ =W W W1 2

0099
01735

0639
0700

.

.
.
.

⎛
⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟W

= ⎛
⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ =

006325
010335

018075
028870

0244
0

.

.
.
.

.

.392
⎛
⎝
⎜

⎞
⎠
⎟

In both traits the contributions from PA accounted for about 26% of the
breeding value of the calf.

In general, the estimates of breeding value for PWG from the multi-
variate analysis above are similar to those from the univariate analysis.
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The maximum difference between the multivariate and univariate breed-
ing values is 0.008 kg (calf 8). The similarity of the evaluations for PWG
from both models is due to the fact that the genetic regression of WWG
on PWG (0.45) is almost equal to the phenotypic regression (0.41)
(Thompson and Meyer, 1986). However, the breeding values for WWG
from the multivariate analysis are higher than those from the univariate
analysis, with a maximum difference of 0.10 kg (calf 8) in favour of the
multivariate analysis. Thus, much of the gain from the multivariate analysis is
in WWG and this is due to its lower heritability, as mentioned earlier.
However, there was only a slight reranking of animals for both traits in the
multivariate analysis.

5.1.4 Accuracy of multivariate evaluations

One of the main advantages of MBLUP is the increase in the accuracy of
evaluations. Presented below are estimates of reliabilities for the proofs
for WWG and PWG from the multivariate analysis and the univariate
analysis of each trait:

Multivariate analysis

Univariate analysis
reliabilityDiagonalsa Reliability

Animal WWG PWG WWG PWG WWG PWG

1 18.606 35.904 0.070 0.102 0.058 0.102
2 19.596 38.768 0.020 0.031 0.016 0.031
3 17.893 33.799 0.105 0.155 0.088 0.155
4 16.506 29.727 0.175 0.257 0.144 0.256
5 16.541 29.865 0.173 0.253 0.144 0.253
6 17.152 31.504 0.142 0.212 0.116 0.212
7 17.115 31.364 0.144 0.216 0.116 0.216
8 16.285 29.160 0.186 0.271 0.156 0.270

a Diagonal elements of the inverse of the coefficient matrix from
multivariate analysis.

The reliability for the proof of animal i and trait j ( )rij
2 in the multi-

variate analysis was calculated as r g PEV gij jj ij jj
2 = −( )/ , where PEVij is

the diagonal element of the coefficient matrix pertaining to animal i and
trait j. This formula is obtained by rearranging the equation given for reli-
ability in Section 3.2.2. For instance, the reliabilities for the proofs for
WWG and PWG for animal 1, respectively, are:

r

r
11
2

21
2

20 18606 20 0070

40 35904 40 0102

= − =

= − =

( . )/ .

( . )/ .
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Similarly to the estimates of breeding values, the reliabilities for ani-
mals for PWG from the multivariate analysis were essentially the same
from the univariate analysis as Gij = rpGjj (Thompson and Meyer, 1986),
where the jth trait is PWG and rp is the phenotypic correlation. However,
there was an increase of about 20% in reliability for WWG for each ani-
mal under the multivariate analysis compared with the univariate analy-
sis. Again much of the gain in accuracy from the multivariate analysis is
WWG.

5.1.5 Calculating daughter yield deviations in multivariate models

The equations for calculating daughter yield deviations (DYD) with a
multivariate model are similar to [3.12] for the univariate model except
that the weights are matrices of order equal to the order of traits. The equa-
tions can briefly be derived (Mrode and Swanson, 2004) as follows.

Given the daughter (prog) of a bull, with no progeny of her own, equa-
tion [5.8] becomes:

$ ( )a W PA W YD1 2prog progprog += [5.9]

Let PC be expressed as in equation [5.7]:

PC G a a= −− ∑05 21. ( $ $ )aprog prog mate [5.10]

Substituting equation [5.9] into equation [5.10] gives:

P G W a W a W YD1 1 2prog prog prog
= + + −−05 21. $ $aprog anim mate( $a mate )∑

Since the daughter has no offspring of her own, W3 = 0; therefore
W I W1 2prog prog

= − . Then:

PC G I W a W YD a2 2prog prog
= − + −−05 21. $ $aprog anim mate(( ) ( ))∑ [5.11]

Substituting equation [5.11] into equation [5.7] and moving all terms
involving $a anim to the left-hand side gives:

( . )$′ + +− − − ∑Z R Z G G W a2prog
1 1 12 05a apar prog anim

= + ′ + −− − − ∑2 05 21 1 1G PA Z R Z YD G W YD a2prog
a apar prog ma( ) (. $ te )

Pre-multiplying both sides of the equation by the inverse of the coeffi-
cient matrix gives:

$a M PA M YD M DYDanim = + +1 2 3( ) ( ) ( ) [5.12]

where:

DYD W YD u W2 2prog prog
= −∑ ∑a aprog mate prog( )$ [5.13]

and M1 + M2 + M3 = I, with M1 = (DIAG)−12G−1apar, M2 = (DIAG)−1 (Z¢R−1Z)
and M3 = (DIAG)−10.5G−1SW2prog

aprog, where (DIAG) = (ZR−1Z + 2G−1apar +
0.5G−1SW2prog

aprog). The matrix W2prog
in equation [5.13] for DYD is not
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symmetrical and is of the order of traits and the full matrix has to be
stored. This could make the computation of DYD cumbersome, especially
with a large multivariate analysis or when a random regression model is
implemented (see Chapter 8). For instance, in the Canadian test day
model, which involves analysing milk, fat and protein yields and somatic
cell count in the first three lactations, it is a matrix of order 36 (Jamrozik
et al., 1997). Thus, for computational ease, pre-multiply W2prog

with G−1,
and the equation for DYD becomes:

DYD G W YD u G W2 2prog prog
= −− −∑ 1 1a aprog mate prog( )$

The product of G W2prog
−1 is symmetric and only upper or lower triangular

elements need to be stored. The computation of DYD for a multivariate
model is illustrated in Section 5.4, using the example dairy data.

5.2 Canonical Transformation

In the example discussed in Section 5.1.2, both traits were affected by the
same fixed effect and all animals were measured for both traits. Thus the
design matrices X and Z were the same for both traits or, in other words, the
traits are said to have equal design matrices. In addition, there was only one
random effect (animal effect) for each trait apart from the residual effect.
Under these circumstances, the multivariate analysis can be simplified into
n (number of traits) single trait analyses through what is called a canonical
transformation (Thompson, 1977b). Canonical transformation involves
using special matrices to transform the observations on several correlated
traits into new variables that are uncorrelated with each other. These new
variables are analysed by the usual methods for single trait evaluation, but
the results (predictions) are transformed back to the original scale of the
observations. Ducrocq and Besbes (1993) have presented a methodology for
applying canonical transformation when design matrices are equal for all
traits but with some animals having missing traits; details of the methodol-
ogy with an illustration are given in Appendix E.2.

Let y be vectors of observations for several traits:

var( )y G R= + [5.14]

where G and R are variance and covariance matrices for the additive
genetic and residual effects, respectively. Assuming G and R are positive
definite matrices, then there exists a matrix Q such that:

QRQ I QGQ W′ = ′and =

where I is an identity matrix and W is a diagonal matrix (Anderson, 1958).
This implies that pre- and post-multiplication of R by the transformation
matrix (Q) reduces it to an identity matrix and G to a diagonal matrix.
The multiplication of y by Q yields a new vector of observation, y*, with
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uncorrelated observations:
y Qy* =

and:
var( )*y W I= +

which is a diagonal matrix. Since there are no covariances between the
transformed traits, they can be independently evaluated. The procedure
for calculating the transformation matrix Q is given in Appendix E.1.

5.2.1 The model

A single trait analysis is usually carried out on each of the transformed
variables. The model for the ith transformed variable can be written as:

y Xb Za ei i i i
* * * *= + + [5.15]

where y i
* = vector of transformed variable for the ith transformed trait;

b i
* = vector of fixed effect for the ith transformed variable i; a i

* = vector of
random animal effect for transformed trait i; e i

* = vector of random resid-
ual error fot the ith transformed trait; and X and Z are incidence matrices
relating records to fixed and random effects, respectively.

The MME to be solved to obtain the best linear unbiased estimator
(BLUE) of b i

* and the BLUP of a i
* are the same as those presented in

Section 3.1 for the univariate model. These equations are:

′ ′
′ ′ +

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′
′

⎡X X X Z
Z X Z Z A

b
a

X y
Z yai

i
*

i
*

i
*

i
*

$

$ ⎣
⎢

⎤

⎦
⎥

As explained earlier, it is assumed for the ith trait that:

var( ) ; var( )* *a A e Ii ii iw= =
and:

var( )*y ZAZ Ii iiw= ′ +

where wii refers to the ith element of the diagonal matrix W.
The MME are solved for b i

* and a i
* and the transformation back to the

original scale is achieved as:

b Q bi i= −1 * [5.16]
a Q ai i= −1 * [5.17]

Thus the multivariate analysis is simplified to i single trait evaluations.

5.2.2 An illustration

Example 5.2
The multivariate analysis for WWG and PWG in Section 5.1.2 is repeated
below, carrying out a canonical transformation, assuming the same
genetic parameters. The calculation of the transformation Q and the diag-
onal matrix W are in Appendix E.1. Presented in Table 5.2 are the data for
all calves in the original scale and as transformed variables (VAR1 and
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VAR2). The observations are transformed into new uncorrelated variables
using the matrix Q. Thus, for animal 4, the record would be transformed
as:

Qy 4
01659 00792
00168 01755

45
68

0
=

−⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ =

. .

. .
.
.

.208
1269.

⎡

⎣
⎢

⎤

⎦
⎥

The residual variance for each of the transformed variables is 1; thus
heritability for the ith transformed variable = wii/(1 + wii) and ai = 1/wii.
Therefore h1

2 = 0.247, h2
2 = 0.573, a1 = 1/0.3283 = 3.046 and a2 = 1/1.3436 =

0.744. A single trait analysis is carried out on the transformed variates for
WWG and PWG using the model and the MME in Section 5.2.1, and
solutions are transformed back to the original scale.

SETTING UP DESIGN MATRICES

The matrix X, which relates records for either VAR1 or VAR2 to sex effects,
is exactly the same as the matrix X1 in Section 5.1.2. Similarly, Z is the
same as Z1 in Section 5.1.2. For animals with records, the vectors of obser-
vations y 1

* and y 2
* are equal to the column of transformed variates for WWG

and PWG gains, respectively, in Table 5.2. The matrices in the MME are
easily obtained through matrix multiplication and the addition to the ani-
mal equations of A −1

1a for VAR1 and A −1
2a for VAR2. A−1 has been given

earlier, in Section 5.1.2. For instance, the MME for VAR1 only are:
$

$

$

$

$

$

$

$

$

$
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b

a

a

a

a

a

a

a
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1
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⎡
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⎢
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⎢
⎢
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⎥
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30 00 0000 0000 0000 1000 0000 0000 1000 1. . . . . . . . . .000
00 20 0000 0000 0000 0000 1000 1000 0000 0000
0
. . . . . . . . . .
. . . . . . . . . .
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0 00 5584 1523 0000 2031 0000 3046 0000 0000

00
− −

00 1523 6092 1523 0000 3046 3046 0000 0000
00 0

. . . . . . . . .
. .
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0 0000 1523 6092 0000 3046 1523 0000 3046

10 00
. . . . . . . .

. .
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−2031 0000 0000 6584 1523 0000 3046 0000
00 10 00
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00 10 30
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⎥
⎥
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Calf

Original scale Transformed scale

Sex Sire Dam WWG PWG VAR1 VAR2

4 Male 1 – 4.5 6.8 0.208 1.269
5 Female 3 2 2.9 5.0 0.085 0.926
6 Female 1 2 3.9 6.8 0.109 1.259
7 Male 4 5 3.5 6.0 0.106 1.112
8 Male 3 6 5.0 7.5 0.236 1.400

VAR1 and VAR2, transformed variables for WWG and PWG, respectively.

Table 5.2. Pre-weaning gain and post-weaning gain for beef calves on the original
and transformed scales.
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Solving the MME for each transformed trait by direct inversion of the
coefficient matrix gives the following solutions on the canonical scales.
Given also are solutions for WWG and PWG after transforming the solu-
tions for the transformed variates to the original scale.

Canonical scale Original scale

Effects VAR1 VAR2 WWG PWG

Sex
1 0.185 1.266 4.361 6.800
2 0.098 1.089 3.397 5.880

Animal
1 0.003 0.052 0.151 0.280
2 −0.002 −0.002 −0.015 −0.008
3 0.000 −0.031 −0.078 −0.170
4 −0.001 −0.002 −0.010 −0.013
5 −0.007 −0.088 −0.270 −0.478
6 0.005 0.095 0.276 0.517
7 −0.015 −0.089 −0.316 −0.479
8 0.009 0.073 0.244 0.392

The solutions are exactly the same as those obtained from the multivariate
analysis in Section 5.1. The solutions are transformed to the original scale
using equations [5.16] and [5.17]. For instance, the solutions for animal 1
for both traits on the original scale are:

$

$

. .

. .
.a

a
11

12

57651 26006
05503 54495

000⎡

⎣
⎢

⎤

⎦
⎥ =

−
⎡

⎣
⎢

⎤

⎦
⎥

29
00516

0151
0280.
.
.

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

5.3 Equal Design Matrices with Missing Records

When all traits in a multivariate analysis are not observed in all animals,
the same methodology as that described in Section 5.1 can also be
employed to evaluate animals, except that different residual covariance
matrices have to be set up corresponding to a different combination of
traits present. If the loss of traits is sequential, that is, the presence of the
ith record implies the presence of 1 to (i − 1) records, then the number of
residual covariance matrices is equal to the number of traits. In general, if
there are n traits, there are (2n − 1) possible combinations of observed
traits and therefore residual covariance matrices (Quaas, 1984).
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5.3.1 An illustration

Example 5.3
For illustrative purposes, consider the data set below, obtained by modi-
fying the data in Table 5.1:

Calf Sex Sire Dam WWG (kg) PWG (kg)

4 Male 1 – 4.5 –
5 Female 3 2 2.9 5.0
6 Female 1 2 3.9 6.8
7 Male 4 5 3.5 6.0
8 Male 3 6 5.0 7.5
9 Female 7 8 4.0 –

The model for the analysis is the same as in Section 5.1.1 and the same
genetic parameters applied in Example 5.1 are assumed. The loss of records
is sequential; there are therefore two residual covariance matrices. For ani-
mals with missing records for PWG, the residual covariance matrix (Rm)
and its inverse ( .R R Rm m m m mr r− −= = = = =1

11
1 11 1

4040 0025) are and . For
animals with records for both WWG and PWG, the residual covariance
matrix (Ro) and its inverse ( )Ro

−1 are:

R Ro o= ⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢−40 11

11 30
0028 0010
0010 0037

1and
. .
. .

⎤

⎦
⎥

SETTING UP DESIGN MATRICES

The ′X1 and ′X2 matrices, which relate sex effects for WWG and PWG,
respectively, are:

′ = ⎡

⎣
⎢

⎤

⎦
⎥ ′ = ⎡

⎣
⎢

⎤

⎦
⎥X X1 2

1 0 0 1 1 0
0 1 1 0 0 1

0 0 0 1 1 0
0 1 1 0 0 0

and

′ = ⎡

⎣
⎢

⎤

⎦
⎥ ′ = ⎡

⎣
⎢

⎤

⎦
⎥X X X X1 1 2 2

3 0
0 3

2 0
0 2

and

In setting up ′X1R11X1, it is necessary to account for the fact that ani-
mals (one male and one female) have missing records for PWG. Thus:

′ = ′ + ′ = ⎡

⎣
⎢

⎤

⎦
⎥ +X R X W W B B1

11
1

11 11 0025
1 0
0 1

0028
2 0
0 2

r rm o . .
⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

0081 0000
0000 0081
. .
. .

where the matrix W relates WWG records for animals 4 and 9 with miss-
ing records for PWG to sex effects and B relates WWG records for calves 5,
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6, 7 and 8 to sex effects. The matrices W¢ and B¢ are:

′ = ⎡

⎣
⎢

⎤

⎦
⎥ ′ = ⎡

⎣
⎢

⎤

⎦
⎥W B

1 0
0 1

0 0 1 1
1 1 0 0

and

However, all animals recorded for PWG also had records for WWG;
therefore:

′ = ′ = ⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢X R X X X2

22
2

22
2 2 0037

2 0
0 2

0074 0
0 0074

ro .
.

.
⎤

⎦
⎥

and:

′ = ′ = − ⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

X R X X X1
12

2
12

1 2 0010
2 0
0 2

002 000
000

ro .
. .
. 002.

⎡

⎣
⎢

⎤

⎦
⎥

Excluding ancestors, the matrix Z1 is an identity matrix because every
animal has a record for WWG. Therefore, ′Z1Z1 = I and:

′ =Z R Z1
11

1 diag(0.025, 0.028, 0.028, 0.028, 0.028, 0.025)

However:
Z2 = diag(0, 1, 1, 1, 1, 0)

indicating that calves 4 and 9 have no records for PWG, and:

′ =Z R Z2
22

2 diag(0.0, 0.037, 0.037, 0.037, 0.037, 0.0)

To account for ancestors (animals 1 to 3), ′Z R Z1
11

1 and ′Z R Z2
22

2 given
above are augmented with three rows and columns of zeros.

The other matrices in the MME can be calculated through matrix mul-
tiplication. The matrix A−1 can be set up and A−1*G−1 (where * means the
Kronecker product) added to the appropriate matrices, as described in
Section 5.1.2, to obtain the MME. The MME are too large to be presented
but solutions from solving the equations are shown below, together with
solutions from the univariate analyses of WWG and PWG.

Effects

Multivariate analysis Univariate analysis

WWG PWG WWG PWG

Sex
1 4.327 6.793 4.325 6.784
2 3.598 5.966 3.599 5.873

Animal
1 0.154 0.288 0.100 0.273
2 −0.059 −0.053 −0.059 0.000
3 −0.061 −0.163 −0.022 −0.165
4 0.027 0.036 0.022 −0.025
5 −0.307 −0.521 −0.218 −0.464
6 0.235 0.477 0.138 0.518
7 −0.280 −0.452 −0.211 −0.460
8 0.272 0.407 0.214 0.392
9 0.077 0.051 0.081 −0.034
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The differences for sex solutions for WWG from the multivariate and
univariate analyses are very similar to those in Section 5.1 since there are
no missing records in WWG. However, sex differences in the two analyses
are different for PWG due to the missing records. Again, most of the
benefit in terms of breeding values from the multivariate analysis was
observed in WWG, as explained in Section 5.1. However, for the calves
with missing records for PWG, there was a substantial increase in their
proofs compared with the estimates from the univariate analysis. The
proofs for these calves for PWG are based on pedigree information only in
the univariate analysis but include information from the records for WWG
in the multivariate analysis due the genetic and residual correlations
between the two traits. Thus the inclusion of a correlated trait in a
multivariate analysis is of much benefit to animals with missing records
for the other trait.

5.4 Cholesky Transformation

When all records are measured in all animals, MBLUP may be simplified
by a canonical transformation, as described in Section 5.2. However, if
animals have some records missing and the loss of records is sequential,
then a Cholesky transformation can be applied (Quaas, 1984). Such situa-
tions can arise, for example, in dairy cattle due to sequential culling, and
different lactations are regarded as different traits.

5.4.1 Calculating the transformation matrix and defining the model

Cholesky transformation involves forming transformed variables (traits)
which are environmentally independent of each other; that is, there is no
residual covariance among them and therefore the residual covariance
matrix for the transformed traits is an identity matrix. The transformation
matrix T−1 is obtained by carrying out a Cholesky decomposition of R, the
residual covariance matrix for the traits, such that:

R = T T¢

where T is a lower triangular matrix. The transformation matrix T −1 is the
inverse of T. The formula for calculating T is given in Appendix E.3.

The vector of observation yki for the ith animal is transformed as:

y T yki ki
* *= −1

where k is the number of traits recorded and y ki
* is the transformed vector.

If traits are missing in y ki, then the corresponding rows of T−1 are set
to zero when transforming the vector of observation. Thus, if y ki is a vector
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of observation of n traits for the ith animal, the transformation of y can be
illustrated as below:

y 11
11

11
* = t y

y = t y t y21
21

11
22

21
* +

M M M
y = t y t y t yn

n n nn
n1

1
11

2
21 1

* + +

where t ij above are the elements of T−1.
Given that the variance of y ki is:

var(y) = G + R

the variance of the transformed variables becomes:

var( ) ( )*y T G T I= ′ +− −1 1

= +G I*

= +M I [5.18]

where G is the covariance matrix for additive genetic effect and G* is the
transformed additive genetic covariance matrix. Note that G* is not diago-
nal. Vectors of solutions ( )* *b ai iand are tranformed back to the original
scale (bi and ai) as:

b Tbi i= * [5.19]
a Tai i= * [5.20]

5.4.2 An illustration

Example 5.4
The methodology is illustrated using the growth data on beef calves in
Section 5.3.1. The residual and additive genetic covariance matrices were:

R G= ⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

40 11
11 30

20 18
18 40

and

Now carry out a Cholesky decomposition of R such that R = TT¢. For the
R above:

T T= ⎡

⎣
⎢

⎤

⎦
⎥ =−6324555 0000

1739253 5193746
0151. .

. .
.

with
81139 0000

0052948 01925393
.

. .−
⎡

⎣
⎢

⎤

⎦
⎥

The transformed additive genetic covariance matrix (M) is:

M T G T= ′ = ⎡

⎣
⎢

⎤

⎦
⎥− −1 1 05000 0380539

0380539 1171972
( )

. .

. .
and

M− =
−

−
⎡

⎣
⎢

⎤

⎦
⎥1 2654723 0862556

0862556 1133334
. .
. .

The transformed variables are calculated using the transforming
matrix T−1. For the first two animals, the transformation is as follows.
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Animal 1:

y t y11
11

11 01581139 45 0712* . ( . ) .= = =

Animal 2:

y t y12
11

12 01581139 29 0459* . ( . ) .= = =
y t y t y22

21
12

22
22 0052948 29 01925393 50 0* . ( . ) . ( . )= + = − + = .809

where y ij and y ij
* are the original and transformed observations, respec-

tively, for the ith trait and jth animal. The transformed variables for all
calves are shown in the table below.

Original traits Transformed traits

Calf Sex Sire Dam WWG PWG y1
* y2

*

4 Male 1 – 4.5 – 0.712 –
5 Female 3 2 2.9 5.0 0.456 0.809
6 Female 1 2 3.9 6.8 0.617 1.103
7 Male 4 5 3.5 6.0 0.553 0.970
8 Male 3 6 5.0 7.5 0.791 1.179
9 Female 7 8 4.0 – 0.632 –

The model for analysis is the same as in Section 5.3.1 except that the vari-
ance of y* is now:

var( ) ( )y T G T I* = +− −1 1

= M + I

The MME for the transformed variables are:

$

$

$

$

*

*

*

*

b
b
a
a

X X 0 X Z 0
0 X X 0

1

2

1

2

1 1 1 1

2 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

′ ′
′ ′X Z

Z X 0 Z Z A A
0 Z X A Z Z A

2 2

1 1 1 1
1 11 1 12

2 2
1 21

2 2
1

′ ′ +
′ ′ +

− −

− −

m m

m m22

1 1

2 2

1 1

2 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

′
′
′
′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

X y
X y
Z y
Z y

*

*

*

* ⎥

The design matrices X1, X2, Z1 and Z2 and the inverse of the relationship
matrix are exactly as in Section 5.3.1. The vector of observations y* now
contains the transformed variables shown in the above table. All other
matrices in the MME above can be derived from the design matrices and
vector of observations through matrix multiplication and the addition of
the A −1 11m and A −1 22m to the animal equations for traits 1 and 2, respec-
tively, and A −1 12m to the block of animal equations for trait 1 by trait 2 and
A −1 21m to the block of equations for trait 2 by trait 1 that pertains to ani-
mals. The MME have not been shown because they are too large. However,
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solving the MME gives the following solutions on the transformed scale. The
solutions transformed to the original scale are also shown.

Effects

Transformed scale Original scale

WWG PWG WWG PWG

Sex
1 0.684 1.079 4.327 6.793
2 0.569 0.958 3.598 5.966

Animal
1 0.024 0.047 0.154 0.288
2 −0.009 −0.007 −0.059 −0.053
3 −0.010 −0.028 −0.061 −0.163
4 0.004 0.005 0.027 0.036
5 −0.048 −0.084 −0.307 −0.521
6 0.037 0.079 0.235 0.477
7 −0.044 −0.072 −0.280 −0.452
8 0.043 0.064 0.272 0.407
9 0.012 0.006 0.077 0.051

These are exactly the same solutions as those obtained in Section 5.3 with-
out any transformation. The number of non-zero elements was 188 in the
analysis on the transformed variables compared with 208 when no transfor-
mation is carried out. This difference could be substantial with large data
sets and could reduce storage requirements when data are transformed. The
solutions were transformed to the original scale using [5.19] and [5.20].
Thus the solutions for male calves on the original scale are:

$

$
. .
. .

b

b
11

12

6324555 0000
1739253 5193746

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

068420
107871

4327
6793

.

.
.
.

5.5 Unequal Design Matrices

This situation arises when traits in the multivariate analysis are affected
by different fixed or random effects – for instance, the multivariate analy-
sis of yields in different lactations as different traits. Due to the fact that
calving in different parities occurs in different years, herd–year–season
(HYS) effects associated with each lactation are different, and an appro-
priate model should include different HYS effects for yield in each parity.
An example where random effects might be different for different traits is
the joint analysis for weaning weight and lean per cent in beef cattle. It
might be considered that random maternal effect (see Chapter 6) is only
important for weaning weight and the model for the analysis will include
maternal effects only for weaning weight.
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5.5.1 Numerical example

Example 5.5
Using the fat yield data in Chapter 4 analysed with a repeatability model,
the principles of a multivariate analysis with unequal design are
illustrated below, considering yield in each parity as different traits and
fitting a different HYS effect for each trait. The data with each lactational
yield treated as different traits and HYS recoded for each trait are as
follows:

Cow Sire Dam HYS1 HYS2 FAT1 FAT2

4 1 2 1 1 201 280
5 3 2 1 2 150 200
6 1 5 2 1 160 190
7 3 4 1 1 180 250
8 1 7 2 2 285 300

HYS1, HYS2, herd–year–season for parity 1 and 2, respectively;
FAT1, FAT2, fat yield in parity 1 and 2.

The aim is to carry out a multivariate estimate of breeding values for
fat yield in lactation 1 (FAT1) and 2 (FAT2) as different traits. Assume the
genetic parameters are:

R G= ⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

65 27
27 70

35 28
28 30

and

and the inverses are:

R G− −=
−

−
⎡

⎣
⎢

⎤

⎦
⎥ =

−1 10018 0007
0007 0017

0113 0105. .
. .

. .
and

−
⎡

⎣
⎢

⎤

⎦
⎥0105 0132. .

The model for the analysis is the same as in Section 5.1 but the MME are
different in Section 5.1 because HYS effects are peculiar to each trait. The
MME with the equations written out separately for each trait are:

$

$

$

$

b
b
a
a

X R X X R X X R Z1

2

1

2

1
11

1 1
12

2 1
11⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

′ ′ ′ 1 1
12

2

2
21

1 2
22

2 2
21

1 2
22

2

1
11

1

′
′ ′ ′ ′
′ ′

X R Z
X R X X R X X R Z X R Z
Z R X Z R X Z R Z A Z R Z A
Z R X Z R

1
12

2 1
11

1
1 11

1
12

2
1 12

2
21

1 2
2

′ + ′ +
′ ′

− −g g
2

2 2
21

1
1 21

2
22

2
1 22

1

1

X Z R Z A Z R Z A

X

′ + ′ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

′

− −

−

g g

R y X R y
X R y X R y
Z R y Z R y
Z

11
1 2

12
2

2
21

1 2
22

2

1
11

1 1
12

2

+ ′
′ + ′
′ + ′
′2 21

1 2
22

2R y Z R y+ ′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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SETTING UP THE DESIGN MATRICES AND MME

The matrix X1 now relates HYS effects to FAT1 while X2 relates HYS
effects to FAT2. The transposes of these matrices are:

′ = ⎡

⎣
⎢

⎤

⎦
⎥ ′ = ⎡

⎣
⎢

⎤

⎦
⎥X X1 2

1 1 0 0 1
0 0 1 1 0

1 0 1 1 0
0 1 0 0 1

and

Matrices Z1 and Z2 are equal and they are identity matrices of order 5
by 5 considering only animals with records. The matrix A−1 has been pre-
sented in Section 4.1. The remaining matrices in MME can be obtained
as described in previous sections. The MME have not been presented
because they are too large. The solutions to the MME are as follows:

Solutions

Effects

Multivariate analysis Univariate analysis

FAT1 FAT2 FAT1 FAT2

HYS
1 175.7 243.2 175.8 237.1
2 219.6 240.6 220.4 250.0

Animal
1 8.969 8.840 6.933 8.665
2 −2.999 −2.777 −2.590 −2.244
3 −5.970 −6.063 −4.341 −6.422
4 11.754 11.658 9.103 12.197
5 −16.253 −15.824 −12.992 −15.563
6 −17.314 −15.719 −15.197 −11.149
7 8.690 8.138 7.566 7.696
8 22.702 20.931 19.417 15.560

Similarly to the results in Section 5.1.2, the largest increase in breeding
value under the multivariate analysis compared with the univariate was
in FAT2. This may be due to the lower heritability of FAT2 compared
with FAT1, as explained earlier.

Compared with the results from the repeatability model (Section 4.2)
on the same data with corresponding estimates of genetic parameters, the
mean breeding values for FAT1 and FAT2 for animals in the multivariate
analysis are similar to the breeding value estimates from the former. The
ranking of animals is the same under both models. Also the differences
between solutions for corresponding levels of HYS are very similar. In
general, the repeatability model on successive records of animals is very
efficient compared with the multivariate model, especially when the
genetic correlation among records is high. The genetic correlation used
for the multivariate analysis was 0.86. Visscher (1991) reported a loss of
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0 to 5% in efficiency in genetic gain with a repeatability model on first
and second fat yield compared with the multivariate model using a selec-
tion index. Mrode and Swanson (1995) reported a rank correlation of 0.98
between breeding values estimates for milk yield in first and second lacta-
tions, from a repeatability model and multivariate analysis for bulls with
60 or more daughters. The benefit of the repeatability model compared
with the multivariate is that it is less computationally demanding and
fewer estimates of genetic parameters are required.

If there are missing records in addition to unequal design matrices for
traits in a multivariate analysis, the analysis can be carried out using the
principles outlined in Section 5.3, defining different residual covariance
matrices for each pattern of missing traits.

5.5.2 Illustrating the computation of DYD from a multivariate model

The computation of DYD from a multivariate model is illustrated using
sire 1 with three daughters (cows 4, 6 and 8) in Example 5.4. As shown in
Section 5.1, since each daughter has one record per each trait, YDij for the
daughter i and trait j equals ( $ )y x bij ij− . Thus:

YD

YD
41

42

201 1755
280 2432

257
368

⎛
⎝
⎜

⎞
⎠
⎟ =

−
−

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
.
.

.

.
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ =

−
−

⎛
⎝
⎜

⎞
⎠
⎟ =

−
;

.

.
.YD

YD
61

62

160 2196
190 2432

596
−

⎛
⎝
⎜

⎞
⎠
⎟

532.

and

YD

YD
81

82

285 2196
300 2406

654
594

⎛
⎝
⎜

⎞
⎠
⎟ =

−
−

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
.
.

.

.
⎜

⎞
⎠
⎟

For all three daughters, the dams are known; therefore W2prog
in [5.13] is

the same for all daughters and is:

W Z R Z G Z R Z2prog
= ′ + ′− − − −( ) ( )1 1 1 12
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The correction of the daughters’ YD for the breeding values of the mates of
the sire is as follows:
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Since aprog equals 1 for all daughters of the bull, DYD for sire 1, using
[5.13], is:

DYD W W W2 2 2prog prog prog
= ⎛

⎝
⎜

⎞
⎠
⎟ +

−−( )
.
.

3
53399
76377

1021 .
.

.

.
947

90576
122110
110662−

⎛
⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥W2prog

= ⎛
⎝
⎜

⎞
⎠
⎟

245207
321543

.

.

Using equation [5.12], the breeding value of sire 1 can be calculated as:

$

$

.

.
.
.

a

a
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12
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⎠
⎟

where:

M W W2 2prog prog2
1 1

3

1

12 05 05 05= +
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⎠
⎟− −

−
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⎜

⎞

⎠
⎟

M2
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00120 00058
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−
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⎞
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⎝
⎜
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⎠
⎟

00058 00116
01937 00836
01099 01459. .
. .
. .

The vector of breeding value calculated for sire 1 using [5.12] is slightly
lower than that shown earlier in the table of results as contributions from
the grand-progeny of the sire are not included.

5.6 Multivariate Models with No Environmental Covariance

In some cases, a multivariate analysis may be necessary when individual
animals have records for one trait (or subset of traits), but relatives have
records on a different trait (or subset of traits). For instance, in beef cattle,
if selection is for dual-purpose sires, male and female calves might be
reared in different environments (different feedlots) and body weight
recorded in male calves and milk yield in female calves. The evaluation of
the sires will be based on multivariate analysis of these two traits. A
special feature of such a multivariate analysis is that there is no environ-
mental covariance between the traits as the two traits are not observed in
the same individual. In Section 5.6.1, the details of such a model are
discussed and its application to example data is illustrated.

Also, when the same trait is measured on relatives in different environ-
ments such that the genetic correlation between performances in the two
environments is not one, a multivariate analysis might be the optimum
means to evaluate sires. For example, milk yield may be recorded on the
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daughters of a bull in two different environments, say, in a tropical envi-
ronment and in a temperate environment. Such a multivariate analysis will
treat milk yield in the various environments as different traits. However, as
the number of environments increases, the data might be associated with
a heterogeneous fixed effects structure that might be difficult to model
correctly in multivariate analysis, such that it might be useful, for practi-
cal purposes of implementation, to analyse not the original data but sum-
maries of the data. A very good illustration of such a multivariate analysis
is the multi-trait sire model used by the international bull evaluation
service Interbull, Uppsala, Sweden, for the across-country evaluation of
dairy sires. This multi-trait sire model, commonly referred to as MACE
(multi-trait across-country evaluations), analyses deregressed breeding
values (DRB) of sires in different countries as different traits. The use of
DRB could be regarded as utilizing a variable that summarizes the daughter
performances of bulls in different countries. This avoids the need to model at
the Interbull centre the heterogeneous fixed effects structure, such as differ-
ent herd management systems and complex national climatic conditions
associated with the daughters’ milk performance records in the different
countries. MACE plays a very important role in the international trade of
dairy cattle and in Section 5.6.2 the model for MACE is discussed and
illustrated.

5.6.1 Different traits recorded on relatives

Defining the model

In this situation, with different traits recorded on relatives in different
environments, the different traits are not observed on the same individual;
consequently, there is not environmental covariance between the traits.
Therefore the residual covariance matrix R is diagonal. Thus, for n traits:

R = =diag diag( , , , ) ( , , , )s s s2 2 2
e e en nnr r r1 2 11 22K K

and:

R− =1 11 22diag( , , , )r r r nnK

However, var(a), where a a a a′ = [ , , , ]1 2 K n , the vector of breeding values, is:

var( )a A G= *

where * refers to the direct product, A the relationship matrix and G
the covariance matrix for additive genetic effects. Schaeffer et al.
(1978) discussed this model in detail but from the standpoint of variance
component estimation.

Assuming there are two traits, the model for analysis is as given in
equation [5.1] but with R and G defined as above. The MME for the BLUP
of a and estimable functions of b are similar to those presented in Section
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5.4.2, when data are transformed using Cholesky decomposition, since
there is no residual covariance between variables. The MME are:

$

$

$
$
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An illustration

Example 5.6
Consider the following data on the progeny of three sires born in the
same herd; assuming that selection is for dual-purpose sires, such that
the male and female calves are raised on different feeding regimes, with
males recorded for yearling weight (kg) and females for fat yield (kg):

Calf Sex Sire Dam HYS
Yearling
weight

Fat
yield

4 Female 1 Unknown – – –
9 Male 1 4 1 375.0 –

10 Male 2 5 2 250.0 –
11 Male 1 6 2 300.0 –
12 Male 3 Unknown 1 450.0 –
13 Female 1 7 1 – 200.0
14 Female 3 8 2 – 160.0
15 Female 2 Unknown 3 – 150.0
16 Female 2 13 2 – 250.0
17 Female 3 15 3 – 175.0

The aim is to estimate HYS effects for both traits and predict breeding val-
ues for yearling weight and fat yield for all animals, carrying out a
multivariate analysis. Note that animal 4 is just an ancestor and has no
yield record for either trait. Assume that the additive genetic covariance
matrix (G) is:

G = ⎡

⎣
⎢

⎤

⎦
⎥

43 18
18 30

and:

R = diag( , )77 70
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The inverse of R is:

R− =1 diag(1/77, 1/70)

and:

G − =
−

−
⎡

⎣
⎢

⎤

⎦
⎥1 00311 00186

00186 00445
. .
. .

The MME given earlier can easily be set up using the principles dis-
cussed so far in this chapter. Solving the MME by the direct inverse of the
coefficient matrix gave the following solutions:

Solutions

Effects
Yearling
weight Fat (kg)

HYS
1 411.833 193.299
2 275.955 205.344
3 – 163.315

Animal
1 −0.472 2.519
2 −3.350 0.381
3 0.856 −3.208
4 −5.142 −3.936
5 −4.778 −2.000
6 4.778 2.000
7 2.177 3.628
8 −4.940 −5.251
9 −10.234 −3.817

10 −8.842 −2.810
11 6.932 4.260
12 11.568 3.060
13 3.029 6.701
14 −6.395 −11.485
15 −2.797 −1.680
16 4.193 10.797
17 0.526 0.050

Selection of dual-purpose sires will be based on some combination of
breeding value estimates for yearling weight and fat yield. If equal
weights were given to yearling weight and fat yield, sire 1 would be the
best of the three sires, followed by sire 3.
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5.6.2 The multi-trait across-country evaluations (MACE)

The sire model for MACE was originally proposed by Schaeffer (1994) and
involved the analysis of the DYD of bulls in different countries as differ-
ent traits, with the number of daughters of a bull used as a weighting fac-
tor. The genetic correlations among DYDs of bulls in different countries
were incorporated. The genetic correlations accounted for genotype by
environment (G × E) interactions and differences in national models for
genetic evaluations among the countries. The genetic correlation among
several countries used by Interbull is usually of medium to high value.

However, due to the inability of some countries to compute DYDs for
bulls, the deregressed proofs (DRP) of bulls became the variable of choice
(Sigurdsson and Banos, 1995) and the weighting factor became the effec-
tive daughter contributions (EDC) of bulls (Fiske and Banos, 2001). The
model in matrix notation is:

y Z Qw Z a ei i i i i i i= + + +1m [5.21]

where yi is the vector of DRP from country i for one trait, such as milk
yield, m i is a mean effect for country i, which reflects the definition of the
genetic base for that country, wi is the vector of genetic group effects of
phantom parents, ai is the vector random sire proof for country i and ei is
the vector of random mean residuals. The matrix Qi relates sires to phan-
tom groups (see Section 3.5) and Zi relates DRP to sires. Given two coun-
tries, the variance–covariance matrix for w, s and e is:

var

w
w
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s
e
e

A A A1

2
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2
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2
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where n and p are the number of bulls and groups, respectively, gij is the
sire genetic (co)variance between countries i and j, and A is the additive
genetic relationship for all bulls and phantom parent groups based on
sire–maternal grandsire (MGS) relationships (see Section 3.5), s ei

2 is the
residual variance for country i, and Di is a diagonal matrix containing the
reciprocal of the effective daughter contribution of the bull in the ith
country.

The variable DRP, analysed in [5.21], are obtained by deregressing the
national breeding values of bulls such that they are independent of all
country group effects and additive genetic relationships among bulls, their
sires and paternal grandsires, which are included in the MACE analysis
(Sigurdsson and Banos, 1995). DRP may therefore contain additive
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genetic contributions from the maternal pedigree, which are included at
the national level but not in MACE. The deregression procedure involves
solving the MME associated with [5.21] for the right-hand-side vector.
The details of the procedure are outlined in Appendix F. The computa-
tion of the EDC of bulls used as the weighting factor for the analysis of
DRP in [5.21] is dealt with in a subsequent section.

The MME for the above model, which are modified such that sire
solutions have group solutions incorporated (see Section 3.5), are:

′ ′
′ ′ + ⊗ − ⊗

− ′ ⊗

− −

− − − − − −

−

X R X X R Z
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[5.22]

Genetic groups are defined for unknown sires and MGS on the basis of
country of origin and year of birth of their progeny. Also maternal
grandams (MGD) are always assumed unknown and assigned to phantom
groups on the same basis.

Then A−1 can be obtained by the rules outlined in Chapter 2, Section
2.4, which can be briefly summarized in the table below, taking into
account the contribution to the groups for MGD. Given a list of pedigrees
with the ith line consisting of a bull, its sire or group, its MGS or group
and a group for its MGD, then contributions to A−1 are as follows:

Bull Sire MGS MGD

Bull d −0.5d −0.25d −0.25d
Sire −0.5d 0.25d 0.125d 0.125d
MGS −0.25d 0.125d 0.0625d 0.0625d
MGD −0.25d 0.125d 0.0626d 0.0625d

where d = 16/(11 + m) and m = 0 if both sire and MGS are known, m = 1 if
the sire is known but MGS is unknown, m = 4 if the sire is unknown and
the MGS is known, and m = 5 if both sire and MGS are unknown.

Usually there are dependencies among group effect equations and 1 is
added to the diagonals of the phantom group effects in the inverse of the
relationship matrix to overcome these dependencies. Then the group
solutions sum to zero; therefore the solutions for bulls are relative to the
same genetic base within each country. The addition of 1 to the diagonals
of the phantom groups implies that group effects are random, with
expected values of zero. Since group effects represent differences in the
effects of previous selection, which should not have expected values of
zero, Schaeffer (1994) indicated that this approach could also be regarded
as biased estimation of the fixed effects of phantom groups: that is, a small
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amount of bias in the estimates of the phantom groups is accepted in
exchange for the hope of getting estimates with smaller mean square
errors.

Computing effective daughter contribution

The use of EDC instead of the number of daughters as a weighting factor
was proposed by Fiske and Banos (2001) from a simulation study in
which they demonstrated that using the numbers of daughters resulted in
biased estimates of sire variances used in MACE and international
reliabilities. The computation of EDC for a bull accounts for such factors
as contemporary group (CG) structure for the bull’s daughters, the correla-
tion between observations on the same daughter and the reliability of the
performance of the daughters’ dams. Thus the EDC provides a measure of
the precision of the daughter information used to compute the deregressed
proof of the bull. The formula for the computation of EDC (Fiske and
Banos, 2001), which included the performance of the dam of the daughter
k of bull i, is:

EDC i
k o

k o dam ok

rel
rel rel

=
− +∑ l ( )

( ) ( )( )4 1

where the summation is over all the k daughters of the bull, l = (4 � h2)/h2

with h2 being the heritability, reldam(o) is the reliability of the dam’s own
performance, relk(o) is the reliability of the animal k’s own performance,
computed as:

rel
n h
n r

k o
k

k
( )

( )
=

+ −

2

1 1

with r being the reliability of the animal’s records, nk the number of lacta-
tions of the daughter k of the sire adjusted for the CG size, computed as:

n nk jkl
l

= −∑ 1 1/

where njkl is the size of the CGj in which the daughter k of sire i made her
lth lactation.

An example of MACE for two countries

Example 5.7
The data set below consists of bull breeding values (kg) and deregressed
proofs for fat yield for six bulls from two countries. Two of the bulls have
evaluations in both countries and in addition each country had two other
bulls which were the only progeny tested in that country. A MACE is
implemented using the data set. Assume residual variances of 206.5 kg2
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and 148.5 kg2 for countries 1 and 2, respectively, with corresponding sire
additive genetic variances of 20.5 kg2 and 9.5 kg2. The sire genetic
covariance between fat yield in both countries was assumed to be
12.839 kg, giving a genetic correlation of 0.93. The computation of the
DRP in the table below is shown in Appendix F.

Country 1 Country 2

Sire EDC BV DRP EDC BV DRP

1 58 9.0 9.7229 90 13.5 14.5088
2 150 10.1 9.9717 65 7.6 7.7594
3 20 15.8 19.2651 – – –
4 25 −4.7 −8.5711 – – –
5 – – – 30 19.6 23.9672
6 – – – 55 −5.3 −9.6226

EDC, effective daughter contribution; BV, breeding value;
DRP, deregressed proof.

Assume that the sires in the data set have the following pedigree
structure, with unknown sires, MGS and MGD assigned to group Gi, with
i = 1,..., 5.

Bull Sire MGS MGD

1 7 G3 G5
2 8 9 G5
3 7 2 G5
4 1 G2 G5
5 8 G3 G4
6 1 9 G4
7 G1 G2 G4
8 G1 G2 G4
9 G1 G2 G4

Computing sire breeding values

The matrix G −1 for Example 5.7 is:

G − =
−

−
⎛
⎝
⎜

⎞
⎠
⎟1 031762 042925

042925 068539
. .
. .

The inverses of the matrix of residual variances for countries 1 and 2 are:

R1
1 02809 07264 00969 01211 0 0− = diag( . , . , . , . , , )
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and:

R2
1 06061 04377 0 0 02020 03704− = diag( . , . , , , . , . )

The design matrix X in [5.7] is:

X = ⎛
⎝
⎜

⎞
⎠
⎟

1 1 1 1 0 0
1 1 0 0 1 1

and:

′ = ⎛
⎝
⎜

⎞
⎠
⎟−X R X1 12252 0

0 16162
.

.

The matrix Z is an identity matrix of order 12, considering only bulls with
evaluations. The matrix A −1 is set up using the rules outlined earlier. The
remaining matrices in [5.22] could be obtained through matrix multiplica-
tion and addition. The MME are of the order of 30 by 30 and have not been
shown. Solutions to the MME by direct inversion gave the following
results:

Solutions

Effects Country 1 Country 2

Country effect
7.268 9.036

Animal/group
A B A B

1 2.604 9.871 2.661 11.697
2 2.176 9.444 0.403 9.439
3 8.059 15.327 5.001 14.037
4 −9.865 −2.597 −5.605 3.431
5 13.634 20.902 9.728 18.764
6 −18.086 −10.818 −13.203 −4.167
7 4.310 11.578 3.071 12.106
8 7.015 14.283 4.489 13.525
9 −6.299 0.969 −5.059 3.977

G1 0.174 7.442 −0.092 8.944
G2 −0.124 7.144 0.126 9.162
G3 −0.071 7.197 0.264 9.300
G4 0.087 7.355 −0.288 8.748
G5 −0.067 7.201 −0.010 9.026

A = solutions for animals and groups from the MME; B = solutions
for animals and groups expressed in each country scale.

The solutions for animals and groups were expressed in each country
scale by adding the solution for country effects for country i to the animal
and group solutions of the ith country. As indicated earlier, the sum of the
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group solutions is zero. In the next section, some of the bull solutions are
partitioned to contributions from various sources to gain a better under-
standing of MACE.

Equations for partitioning bull evaluations from MACE

The equations for sire proofs from [5.22] are:

( )$ ( )$ ( $ )′ + ⊗ = ⊗ + ′ −− − − − − −Z R Z A G a A Q G g Z R y Xc1 1 1 1 1 1 [5.23]

where:

$ $ $a Qg s= +

Thus equation [5.23] can be expressed as:

( ) $ ( )$ ( )′ + ⊗ = ⊗ + ′− − − − − −Z R Z A G a A Q G g Z R Z CD1 1 1 1 1 1 [5.24]

where:

CD Z R Z Z R y Xc= ′ ′ −− − −( ) ( ( $ ))1 1 1

CD (country deviation) is simply a vector of weighted average of corrected
DRP in all countries where the bull has a daughter, the weighting factor
being the reciprocal of EDC multiplied by the residual variance in each
country. Since R−1 is diagonal, CD is equal to the vector ( $ )y Xc− .

For a particular bull with a direct progeny (e.g. son), equation [5.24]
can be written as:

( )$ ( $ . ( $ $′ + = + +− − −Z R Z G a G a a1 1 1 05a abull bull par sire mgs g Z R Z CD)) ( )+ ′ −1

+ −− ∑G a a1 025aprog prog mate( $ . $ ) [5.25]

where apar = 8
11

8
15

2
3

1
2, , or if both sire and MGS (maternal grandsire), only

mgs, only sire or no parents are known, respectively, and aprog = 8
11 if the

MGS of the bull’s mate is known or 2
3 if unknown. The above values for

apar and aprog are based on the assumption that A −1 has been calculated
without accounting for inbreeding. Note that in equation [5.25]:

a = a abull par prog2 05+ .

Equation [5.25] can be expressed as:

( )$ ( ) ( )′ + = + ′− − − −Z R Z G a G PA Z R Z CD1 1 1 12a abull bull par

+ −− ∑05 2 051. ( $ . $ )G a aaprog prog mate

where:

PA a a g= + +05 025. $ . ( $ $ )sire mgs

Pre-multiplying both sides of the equation by ( )Z R Z G′ +− − −1 1 1abull gives:

$a W PA W CD W PCbull = + +1 2 3 [5.26]
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where:

PC a a W W W I= prog prog mate proga a( $ . $ )2 05 1 2 3− + + =∑ ∑ and

The matrices W1, W2 and W3 are the product of ( )Z R Z G′ +− − −1 1 1abull and
2G −1apar , Z R Z′ −1 and 05 1. G − Saprog , respectively. Using equation [5.26],
the contributions from different sources of information from different
countries to the MACE of a bull can be computed.

If the progeny in equation [5.25] is not a direct progeny of the bull but
a maternal grandson of the bull, then aprog equals 4

11 if mate (sire) is known
or 4

15 if unknown. Then equation [5.25] becomes:

( )$ ( $ . ( $ $′ + = + +− − −Z R Z G a G a a1 1 1 05a abull bull par sire mgs g Z R Z CD)) ( )+ ′ −1

+ prog prog mateG a u− −∑1 05a ( $ . $ )

and abull now equals 2 025 05 05a apar prog mate s+ =. . $ . $ ,and a a the sire of the
progeny. The above can be expressed as:

( )$ ( ) ( )′ + = + ′− − − −Z R Z G a G PA Z R Z CD1 1 1 12a
abull bull

par

+ −− ∑025 4 21. ( $ $ )G a aaprog prog mate

Pre-multiplying both sides by ( )′ +− − −Z R Z G1 1 1abull gives the same
equation as equation [5.26] but with:

PC a a= −∑ ∑a aprog prog mate prog( $ $ )4 2 [5.27]

and now:

W Z R Z G G3
1 1 1 025= ′ +− − − ∑( ) ( . )a abull prog

-1

The use of [5.26] to partition proofs from MACE is illustrated for two
bulls, one with no progeny and another with a maternal grandson. First,
consider bull 3 in Example 5.7 that has deregressed proofs only in country
1 and has no progeny. Therefore CD3i for bull 3 in country i is:

CD CD31 31 1 32192651 7261 120041 0= − = − = =y m . . . and

Parent average for bull 3 (PA3i) in country i is:

PA a a g31 71 21 5105 025 05 4310 025 2= + + = +. ( $ ) . ( $ $ ) . ( . ) . ( .G 176 0067+ −( . ))
= 268225.

and:

PA a a g32 72 22 5205 025 05 3071 025 0= + + = +. ( $ ) . ( $ $ ) . ( . ) . ( .G 403 0010+ −( . ))
= 163375.

where $a ji is the breeding value of animal j in country i and $gGji is the solu-
tion for group j and in the ith country.

The residual variance for bull 3 in country 1 (r31) = ( 1
20)206.5 = 10.325

and its inverse equals 0.09685. Both sire and MGS of bull 3 are known;
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therefore abull = 16
11. Then:

( )
. . .

′ + = ⎛
⎝
⎜

⎞
⎠
⎟ +

−
−

− −Z R Z G1 1 009685 0
0 0

04620 062436
abull

062436 099693. .
⎛
⎝
⎜

⎞
⎠
⎟

=
−

−
⎛
⎝
⎜

⎞
⎠
⎟

055884 062436
062436 099693
. .
. .

The matrices of weights (Wi) using [5.26] are:

W1

1055884 062436
062436 099693

04620 0
=

−
−

⎛
⎝
⎜

⎞
⎠
⎟

−−. .
. .

. .62436
062436 099693−

⎛
⎝
⎜

⎞
⎠
⎟

. .

=
−

⎛
⎝
⎜

⎞
⎠
⎟

04229 0
03614 10000
.
. .

and:

W2

1055884 062436
062436 099693

009685 0
0

=
−

−
⎛
⎝
⎜

⎞
⎠
⎟

−. .
. .

.
0

05771 0
03614 0

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟

.

.

Therefore the vector proofs of bull 3 are:

$

$

.

.
.a

a
W W31

32
1 2

268225
163375

119971
0

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ =

11343
06644

69235
43358

8058
5

.

.
.
.

.

.000
⎛
⎝
⎜

⎞
⎠
⎟

The contribution from the DRP of bull 3 in country 1 accounts for over
85% of the MACE proof in both countries, although the bull has no DRP in
country 2. Thus, with only 20 daughters, parental contribution was not
very large, although, in general, parental contributions will be influenced
by the heritability of the traits in both countries and the genetic correla-
tion between them.

When a bull has a proof only in country i and not in j, its proof in
country j can be obtained (Mrode and Swanson, 1999) as:

$ ( / )( $ )a PA a PAj j ij ii i ig g= + − [5.28]

where gii is the genetic variance in country i and gij the genetic covariance
between countries i and j. Therefore, if interest was only in calculating the
proof of bull 3 in country 2, it can be obtained from the above equation as:

$ . ( . / . )( . . ) .a 32 163375 12839 205 8059 268225 5001= + − =

Equation [5.28] can be derived from [5.25] as follows. The equation for $a 32
from [5.25] is:

( )$ ( $ . ( $ $ )g gbull par sire mgs mgd
22

32
22

2 2 205a aa a a g= + +
+ + + +g gpar sire mgs mgd bull

21
1 1 1

21
3105a a( $ . ( $ $ ) ( )$a a g a

where $ ,a sirej $a mgsi and $gmgdj are the proofs for the sire, MGS and solution
for the MGD in country j, respectively, and gii are the inverse elements
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of G −1. Since a abull par= 2 for bull 3, multiplying the above equation by
( )2 1apar

− gives:

g g g g22
32

22
2

21
1

21
31$ ( ) ( ) $a PA PA a= + −

g g g22
32

22
2

21
31 1$ ( ) ( $ )a PA a PA= + −

$ / ( $ )a PA a PA32 2
21 22

31 1= − −g g
$ / ( $ )a PA a PA32 2 21 22 31 1= + −g g

Thus the proof of a bull in country j is dependent on the parent average of
the bull in country j and the Mendelian sampling of the bull in the ith
country.

Partitioning the proof of bull 2 with records in both countries and a
maternal grandson (bull 3) is as follows. The country deviations for bull 2
in both countries are:

CD21 21 1 99717 7268 27037= − = − =y m . . .

and:

CD22 22 2 77594 9036 12766= − = − = −y m . . .

Parent average for sire 2 (PA2i) for country i is:

PA a a g21 81 91 5105 025 05 7015 025 6= + + = + −. ( $ ) . ( $ $ ) . ( . ) . (G . ( . ))299 0067+ −
= 1916.

PA a a g22 82 92 5205 025 05 4489 025 5= + + = + −. ( $ ) . ( $ $ ) . ( . ) . (G . ( . ))059 0010+ −
= 097725.

Progeny contributions (PC) from bull 3 to sire 2 (PC2i) in country i are:

PC 21 31 714 2 4 8059 2 4310 23616= − = − =( $ ) ( $ ) ( . ) ( . ) .a a

PC 22 32 724 2 4 5001 2 3071 13862= − = − =( $ ) ( $ ) ( . ) ( . ) .a a

The residual variance for bull 2 in country 1, (r21) = ( 1
150)206.5 and in country

2, (r22) = ( 1
65)148.5. Corresponding inverses were 0.72639 and 0.43771, respec-

tively. Since both sire and MGS of bull 2 are known and he has a maternal
grandson, a a abull par prog= + = + =2 025 2 025 1545458

11
4
11. ( ) . ( ) . . Therefore:

( )
.

.
.

′ + = ⎛
⎝
⎜

⎞
⎠
⎟ +

−− −Z R Z G1 1 072630 0
0 043771

049087 0
abull

.
. .

66338
066338 105924−

⎛
⎝
⎜

⎞
⎠
⎟

=
−

−
⎛
⎝
⎜

⎞
⎠
⎟

121726 066338
066338 149695
. .
. .

From [5.26], the matrices of weights (Wi) are:

W1

1121726 066338
066338 149695

04620 0
=

−
−

⎛
⎝
⎜

⎞
⎠
⎟

−−. .
. .

. .62436
062436 099693−

⎛
⎝
⎜

⎞
⎠
⎟

. .

=
−

−
⎛
⎝
⎜

⎞
⎠
⎟

02007 01977
03281 05783
. .
. .
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W2

1121726 066338
066338 149695

072639 0
0

=
−

−
⎛
⎝
⎜

⎞
⎠
⎟

−. .
. .

.
043771

07867 02101
03487 03855.
. .
. .

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟

W3

1121726 066338
066338 149695

002887 0
=

−
−

⎛
⎝
⎜

⎞
⎠
⎟

−−. .
. .

. .

. .
03902

003902 006231−
⎛
⎝
⎜

⎞
⎠
⎟

=
−

−
⎛
⎝
⎜

⎞
⎠
⎟

00125 00124
002051 00361
. .
. .

The vector of proof for bull 2 is:

$

$

.

.
.
.

a
a

W W21

22
1 2

19160
09773

27037
1276

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟ +

− 6
23616
13862

2176
0403

3
⎛
⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟W

.

.
.
.

Again, similarly to bull 3 above, the contributions from the DRP in
both countries accounted for much of the MACE proofs of bull 2 in coun-
tries 1 and 2.

Some limitations of MACE

One of the limitations of MACE involves the use of deregressed breeding
values; therefore different data editing procedures and genetic evaluation
models among countries could lead to an artificial interaction between
the breeding values of sires and therefore less than unity genetic correla-
tions among countries, even though the expression of the underlying bio-
logical trait is identical. The definition of traits according to country
borders rather than actual climatic differences has been regarded as
another weakness of MACE. This implies that MACE is unable to account
for G × E between herds due to differences in climatic conditions and
management practices in large countries such as the USA or Australia. On
the other hand, significant G � E may not exist between small neighbour-
ing countries, such as The Netherlands and Belgium, but current MACE
procedure assumes so by defining traits according to country boundaries.

Efforts to address these problems are currently only at the research
stage. In an effort to overcome the first limitation, Weigel et al. (2001) ana-
lysed actual test day records of first lactation milk, fat and protein yields
in Holstein-sired cows from 17 countries with a multiple-trait sire BLUP.
The use of test day records avoided the problems of differences in editing
procedures among countries. In general, the genetic correlations (rg) from
their study between countries with high genetic level, intensive manage-
ment and adequate genetic ties (e.g. the USA, Canada, France, Germany
and the UK) were similar to rg calculated by Interbull using deregressed
breeding values. The estimates of rg tended to be lower than Interbull esti-
mates between countries with weak genetic ties (Estonia, Ireland, Israel)
but higher between Ireland and both Australia and New Zealand. The
concept of borderless evaluation, which involves standardized data col-
lection and evaluation across national borders, was introduced by Lohuis
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and Dekkers (1998) to address the second limitation. They suggested that
borderless evaluations could be based on similar herds grouped together
across countries on the basis of similar production environments. Weigel
and Rekaya (2000) examined a multiple-trait herd cluster model for such
international borderless genetic evaluation. The estimates of rg among
clusters were generally in the same range (0.84 to 0.94) as those estimated
among countries by Interbull.
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6 Maternal Trait Models: Animal
and Reduced Animal Models

The phenotypic expression of some traits in the progeny, such as weaning
weight in beef cattle, is influenced by the ability of the dam to provide a
suitable environment in the form of better nourishment. Thus the dam
contributes to the performance of the progeny in two ways: first, through
her direct genetic effects passed to the progeny and, secondly, through her
ability to provide a suitable environment, for instance in producing milk.
Traits such as birth and weaning weights in beef cattle fall into this cate-
gory and are termed maternally influenced traits. The ability of the dam to
provide a suitable environment for the expression of such traits in her
progeny is partly genetic and partly environmental. Similarly to the
genetic component of an individual, the maternal genetic component can
be partitioned into additive, dominance and epistatic effects (Willham,
1963). The environmental part may be partitioned into permanent and
temporary environmental components. It is the maternal additive genetic
component of the dam that is passed on to all her offspring but it is
expressed only when the female offspring have progeny of their own.

In the usual mixed linear model for maternally influenced traits [6.1],
the phenotype is partitioned into the following:

1. Additive genetic effects from the sire and the dam, usually termed the
direct genetic effect.
2. Additive genetic ability of the dam to provide a suitable environment,
usually termed the indirect or maternal genetic effect.
3. Permanent environmental effects, which include permanent environ-
mental influences on the dam’s mothering ability and the maternal
non-additive genetic effects of the dam.
4. Other random environmental effects, termed residual effects.

In this chapter, the mixed model methodology for genetic evaluation in
models with maternal effects is discussed considering a univariate situation,

© R.A. Mrode 2005. Linear Models for the Prediction of Animal Breeding Values,
2nd Edition (R.A. Mrode) 121

135
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:22:40 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



and the extension to multivariate analysis is also briefly presented. The
application of best linear unbiased prediction (BLUP) to models with
maternal effects was first presented by Quaas and Pollak (1980).

When repeated measurements for maternally influenced traits are
available over a range of ages (for instance, body weight from birth to 630
days), a random regression model (see Chapter 7) might be more appropri-
ate to analyse such a trait. A random regression model for maternally
influenced traits is briefly defined in Section 7.2.5 of Chapter 7.

6.1 Animal Model for a Maternal Trait

The model for maternally influenced traits in matrix notation is:

y = Xb + Zu + Wm + Spe + e [6.1]

where y = vector of observations, b = vector of fixed effects, u = vector of
random animal effects, m = vector of random maternal (indirect) genetic
effects, pe = vector of permanent environmental effects, as explained in 3
above, e = vector of random residual effects, and X, Z, W and S are inci-
dence matrices relating records to fixed, animal, maternal genetic and
permanent environmental effects, respectively.

It is assumed that:

var

u
m
pe

e

A A
A A

I

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

g g

g g

pe

11 12

21 22
2

0 0
0 0

0 0 0
0

s

0 0 2Is e

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

where g11 = additive genetic variance for direct effects, g22 = additive
genetic variance for maternal effects, g12 = additive genetic covariance
between direct and maternal effects, s pe

2 = variance due to permanent
environmental effects, and s e

2 = residual error variance.
The variance of y, using the same arguments as in Section 3.1, is:

var( ) = [ ]y Z W
A A
A A

Z
W

SI
g g

g g
pe

11 12

21 22

2⎡

⎣
⎢

⎤

⎦
⎥

′
′

⎡

⎣
⎢

⎤

⎦
⎥ + s ′ +S I s e

2

The best linear unbiased estimator (BLUE) of estimable functions of b
and the BLUP of u, m and pe in [6.1] are obtained by solving the following
mixed model equations (MME):

$

$

$

$

b
u

m
pe

X X X Z X W X S
Z X Z Z A Z W

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

′ ′ ′ ′
′ ′ + ′−1

1a + ′
′ ′ + ′ + ′
′ ′ ′ ′ +

−

− −

A Z S
W X W Z A W W A W S
S X S Z S W S S I

1
2

1
2

1
3

4

a

a a

a

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

′
′
′

′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

X y
Z y
W y
S y

[6.2]
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with:

G G= ⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥−g g

g g
g g

g g
11 12

21 22

1
11 12

21 22

1 2; and
a a

a a
s

2 3

2
11 12

21 22

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥e

g g

g g

a s s4
2 2= e pe/

6.1.1 An illustration

Example 6.1
Assume the data in Table 6.1 to be the birth weight for a group of beef
calves. The aim is to estimate solutions for herd and sex effects and pre-
dict solutions for direct and maternal effects for all animals and perma-
nent environmental effects for dams of progeny with records. Suppose
that the genetic parameters are g11 = 150, g12 = −40, g22 = 90, s pe

2 40= and
s e

2 350= . Then:

G − = ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
1 1 2

2 3

000756 000336
000336 00126
. .
. .

and
a a

a a⎢
⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

2647 1176
1176 4412
. .
. .

and a4 350 40 875= =/ . .
The model for the analysis is as presented in equation [6.1].

SETTING UP DESIGN MATRICES

Considering only animals with records, the first three rows of matrix X
relate records to herd effects and the last two rows to sex effects. The
transpose of X is:

′ =X

1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1
1 0 0 1 1 0 0 0 1 0
0 1 1 0 0 1 1 1 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
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Calf Sire Dam Herd Sexa Birth weight

5 1 2 1 1 35.0
6 3 2 1 2 20.0
7 4 6 1 2 25.0
8 3 5 1 1 40.0
9 1 6 2 1 42.0

10 3 2 2 2 22.0
11 3 7 2 2 35.0
12 8 7 3 2 34.0
13 9 2 3 1 20.0
14 3 6 3 2 40.0

a 1 = male and 2 = female (throughout chapter)

Table 6.1. Birth weight for a group of beef calves.
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Excluding ancestors, each animal has one record; therefore Z is an
identity matrix. However, Z is augmented with columns of zeros equal to
the number of ancestors to take account of ancestors in the pedigree. The
matrices W and S relate records through the dam to their effects – that is,
maternal genetic effect and permanent environmental effect, respectively.
However, since maternal effect is genetic and is passed from parent to
offspring, estimates of maternal effect are for all animals in the analysis
while estimates of permanent environmental effects are only for dams of
progeny with records. Thus, in setting up W, all animals are considered,
while only four dams with progeny having records are taken into account
for S. For the example data set, W (with rows and columns numbered by
the relevant animal they relate to) is:

1   2   3   4   5   6   7   8   9  10 11 12 13 14

W =

5
6
7
8
9

10
11
12
13
14

0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

and:
5   6   7   8   9  10 11 12 13 14

′

⎡

⎣

⎢
S =

2
5
6
7

1 1 0 0 0 1 0 0 1 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 1

0 0 0 0 0 0 1 1 0 0

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

The matrix S above implies, for instance, that animals 5, 6, 10 and 13 have
the same dam (animal 2), while animals 11 and 12 are from another dam
(animal 7).

The transpose of the vector of observations is:

y′ = [ ]35 20 25 40 42 22 35 34 20 40

The other matrices in the MME can be calculated through matrix multi-
plication. The inverse of the relationship matrix is calculated applying the
rules in Section 2.3.1. The matrix A 1− a1 is added to animal equations,
A −1

2a to the equations for maternal genetic effects, A 1− a3 to the animal by
maternal genetic equations and maternal genetic by animal equations and
a4 to the diagonals of the equations for permanent environmental effects to
obtain the MME. The MME are not presented because they are too large.
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There is dependency between the equations for herds and sex; thus the row
for the first herd was set to zero in solving the MME by direct inversion.
Solutions to the MME are as follows:

Effects Solutions

Herd–year–season
1 0.000
2 3.386
3 1.434

Sex of calf
1 34.540
2 27.691

Animal and maternal
1 0.564a 0.262b

2 −1.244 −1.583
3 1.165 0.736
4 −0.484 0.586
5 0.630 −0.507
6 −0.859 0.841
7 −1.156 1.299
8 1.917 −0.158
9 −0.553 0.660

10 −1.055 −0.153
11 0.385 0.916
12 0.863 0.442
13 −2.980 0.093
14 1.751 0.362

Permanent environment
2 −1.701
5 0.415
6 0.825
7 0.461

a Solutions for direct animal effects.
b Solutions for maternal genetic effects.

The solutions show little difference between the herds but the males
are heavier than females by about 6.85 kg at birth. The solution for level i
of the fixed effect n can be calculated using [4.3] except that the sum of
yields for the level of fixed effect is corrected in addition for maternal
effects. That is

$

$ $ $ $

b

y b a m pe

in
f

inj
j

ink
k

inl
l

in

=

− − − −
=
∑ ∑ ∑ ∑inf int

1

diag

t

in

∑
diag

[6.3]
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where $minl is the solution for level l of genetic maternal effects within
level i of the nth fixed effect and all other terms are as defined in [4.3].
Thus the solution for level l of sex effect is:

$ [ ( $ $ $ ) ( $ $ $ $ )

( $

b hd hd hd a a a a11 1 2 3 5 8 9 13137 2

2

= − + + − + + +
− m m m pe pe pe2 5 6 2 5 62 4+ + − + +$ $ ) ( $ $ $ )]/

= − − − − − − −[ . ( . ) ( . ) ( . )]/137 482 0986 2832 2162 4
= 34.540

where $hdj is the solution for level j of herd effect.
From the MME, the solutions for direct and maternal effects for ani-

mal i with progeny o are:

$

$

( ) ( )
( ) ( )

u

m

n d k d k

d k n d k
i

i

⎡

⎣
⎢

⎤

⎦
⎥ =

+ + +
+ + +

1 1 1 1 2

1 2 2 1

a a

a a3

1

2
⎡

⎣
⎢

⎤

⎦
⎥

+
+

⎡

⎣
⎢

⎤

⎦
⎥

+ − − −

−

Hk
u u

m m

y b m p

s d

s d

i i dam da

$ $

$ $

$ $ $ m

o o o i

o mate

oy b u p
k

a a

m− − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
−

−$ $ $

$ . ( $ )
$ . (

H 3
05

05 $ )mmate

⎡

⎣
⎢

⎤

⎦
⎥ [6.4]

where n1 is the number of records for animal i, n2 is the number of prog-
eny records with animal i as the dam, d = 2, 4

3 or 1 when both, one or no
parents of animal i are known, respectively, k2 = 1 or 2

3 when both or one
parent of animal i are known, k1 = 1

2 and k3 = 1 when the mate of animal i
is known or k1 = 1

3 and k3 = 2
3 with the mate unknown and:

H = ⎡

⎣
⎢

⎤

⎦
⎥

a a

a a

1 2

2 3

For instance, the solutions for direct and genetic maternal effects for animal
5 are:

$

$

( . ) . ( . ) .
( . ) .

u

m
5

5

1 2 05 2647 2 05 1176
2 05 117

⎡

⎣
⎢

⎤

⎦
⎥ =

+ + +
+ 6 1 2 05 4412

1

2
1 2

2 2

5 1

+ +
⎡

⎣
⎢

⎤

⎦
⎥

+
+

⎡

⎣
⎢

⎤

⎦
⎥

+ − −

−

( . ) .

$

Hk
u u

m m

y b $ $
$ $ $

$ . ( $ )
$

m p

y b u p
k

a a

m
2 2

8 1 8 5
3

8 3

8

05
0

−
− − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
−

−
H

. ( $ )5 3m
⎡

⎣
⎢

⎤

⎦
⎥

$

$

( . ) . ( . ) .
( . ) .

u

m
5

5

1 2 05 2647 2 05 1176
2 05 117

⎡

⎣
⎢

⎤

⎦
⎥ =

+ + +
+ 6 1 2 05 4412

1
0564 1244
0262 1

1

+ +
⎡

⎣
⎢

⎤

⎦
⎥

+ −
+ −

−

( . ) .
( )

. ( . )

. (
H

. )

. ( . ) ( . )
.

583

35 0 3454 1583 1701
40 0 3454

⎡

⎣
⎢

⎤

⎦
⎥

+
− − − − − −

− − − −
⎡

⎣
⎢

⎤

⎦
⎥

+
−

− −

1917 0415

1
1917 05 1165
0158 05

. .

( )
. . ( . )
. . (

H
0736

0630
0507. )
.
.

⎡

⎣
⎢

⎤

⎦
⎥ =

−
⎡

⎣
⎢

⎤

⎦
⎥

The solution for the permanent environmental effect for dam j from
the MME is:

$ ( $ $ $ )/( )pe y b u m nj o o o j= − − − +2 3a [6.5]
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where all terms are as defined in [6.4]. For animal 5, the solution for the
permanent environmental effect is:

$ . . ( . )/( . ) .pe5 40 0 3454 1917 0507 1 875 0415= − − − − − + =

Additive genetic maternal effects represent good mothering ability,
which is passed on from dams to progeny, while permanent environment
effects refer to permanent environmental and maternal non-additive
genetic influences on the mothering ability of the dam. Thus selection of
dams for the next generation in a maternal line would place emphasis on
good genetic maternal effects in addition to a good estimate of breeding
value. If equal emphasis is placed on both effects, dams 7 and 5 would be
the top two dams in the example while dam 2 ranks lowest. However, if the
main interest is the performance of the future dams in the same herd, then
selection of dams would be based on some combination of the solutions
for direct, maternal genetic and permanent environmental effects for
the dams. Again, in the example data, dam 2 ranks lowest while the best
two dams are dams 6 and 7 if equal emphasis is placed on the three
components.

In the case of males, the selection of sires for a maternal line, for
instance, would be based on a combination of solutions for direct and
maternal genetic effects. Obviously, sires 3 and 1 would be the top two
bulls for such a purpose. However, if the emphasis is only on direct
genetic effects, probably to breed a bull, then sire 8 in the example would
be the bull of choice.

6.2 Reduced Animal Model with Maternal Effects

In Chapter 3, Section 3.4, the use of the reduced animal model (RAM),
with only one random effect apart from residual error in the model, was
considered. The records of non-parents in the MME were expressed as
the average of parental breeding values plus Mendelian sampling. This
has the advantage of reducing the number of random animal equations in
the MME. The application of RAM with multiple random effects in the
model is illustrated in this section using the example data used for the
full animal model in Section 6.1. The model for the analysis is the same
but design matrices and the variance of non-parental animals are differ-
ent. From the arguments in Section 3.4, the model for the RAM can be
expressed as:

y
y

X
X

b
Z
Z

u Z m Z pe
e
e

p

n

p

n

p

n
p

p

n

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥ + ⎡

⎣
⎢

⎤

⎦
⎥ + + + ⎡

2 3
⎣
⎢

⎤

⎦
⎥ [6.6]

where yp, yn = vector of observations for parent and non-parents,
respectively, b = vector of fixed effects, up = vector of random animal
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effect for parents, m = vector of maternal genetic effects for parents, pe =
vector of permanent environmental effects, and ep, en = vector of residual
error for parents and non-parents, respectively.

The incidence matrices Z2 and Z3 relate records to maternal genetic
and permanent environmental effect, respectively. The matrices Zp and
Xp relate records of parents to animal and fixed effects, respectively,
while Zn and Xn relate records of non-parents to parents (animal effect)
and fixed effects, respectively.

It is assumed that:

var

u
m
p
e
e

A A
A A

p

p

n

e

g g

g g
⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

11 12

21 22

0 0 0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

2

2

2

I
I

I

s

s

s

pe

ep

en

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

where s ep
2 is the residual variance for parents, which is equal to s e

2 in
Section 6.1, s en

2 is the residual variance for non-parents and is equal to
I + Dg11, with D being a diagonal matrix containing elements djj, which are
equal to 3

4 or 1
2 depending on whether one or both parents are known. The

matrix G and s pe
2 are defined as in Section 6.1. Let:

X
X
X

Z
Z
Z

R
I

I

R
= ⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =p

n

p

n

ep

en

n, ,1

2

2

0
0

s

s

0
0

0
0

1
1

1

R

R
R

R

p

p

n

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥−

−

−

and

Again, the MME provide the basis of the BLUE of estimable functions of b
and BLUP of a, m and pe in [6.6]. The relevant MME are:

$

$

$

$

b
u

m
pe

X R X R X R Z X R

p

X Z⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

′ ′ ′ ′− − − −1 1
1

1
2

1Z
Z R Z R Z A Z R Z A Z R Z

3

1
1

1
1

1
1 11

1
1

2
1 12

1
1

3′ ′ ′ + ′ + ′− − − − − −X g gp p

′ ′ ′ + ′ + ′
′

− − − − − −Z R Z R Z A Z R Z A Z R Z
Z

2
1

2
1

1
1 21

2
1

2
1 22

2
1

3X g gp p

3
1

3
1

1 3
1

2 3
1

3
21R Z R Z Z R Z Z R Z I− − − −′ ′ ′ ′ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

X pe/s

−

−

−

−

−

′
′
′
′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

1

1
1

2
1

3
1

X R y
Z R y
Z R y
Z R y

where gii are the elements of the inverse of G.
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As shown in Section 3.4, each block of equations in the MME above
can be expressed as the sum of the contributions from parents’ records
and non-parents’ records. Thus:

X R X X R X X R X′ = ′ + ′− − −1 1 1
p p p n n n

Expressing [6.5] as shown for the equations for the block of fixed effects
above and multiplying by Rp gives:

′ + ′ ′ + ′

′ + ′ ′

− −

−

X X X R X X Z X R Z

Z X Z R X Z Z

p p n n n p p n n n

p p n n n p p

1 1

1 + ′ +

′ + ′ ′ + ′ +

− −

− − −

Z R Z A

Z X Z R X Z Z Z R Z A

n n n

p n n p n n

1 1
1

2 2
1

2 2
1 1

a

a2

3 3
1

3 3
1

2

′ + ′ ′ + ′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

′ + ′

− −Z X Z R X Z Z Z R Z

X Z X R

p n n p n n

p n n p n n

p n n p n

− −

− −

′ + ′

′ + ′ + ′ + ′

1
2 3

1
3

2
1

2
1

2 3

Z X Z X R Z

Z Z Z R Z A Z Z Za R Z

Z Z Z R Z A Z Z Z R Z

Z Z Z

n
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−

− − −′ + ′ + ′ + ′
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1
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2
1

3 2 3 2
1

3

3 3

a

3
1

3 3 3 3
1

3 4R Z Z Z Z R Z I

b

a

m
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⎤

⎦

⎥
⎥
⎥
⎥
⎥
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⎡
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⎢
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⎢
⎢
⎢
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$
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$⎢

⎤

⎦

⎥
⎥
⎥
⎥
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−

X y X R y
Z y Z R y
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⎢

⎤
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⎥
⎥
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⎥

1

3 3
1

y
Z y Z R y

The a terms are as defined in equation [6.2] and Rn
−1 now equals

1 1 1/( )+ −Da . The MME for the solutions of b, u, m and pe can therefore be
set up as shown above or as in equation [6.7].

6.2.1 An illustration

Example 6.2
The same data set and genetic parameters in Section 6.1 are used below to
demonstrate the principles for setting up RAM with maternal effects in
the model using [6.5]. Recollect that:

G G= ⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢

⎤

⎦
−40 10

10 20
0029 0014
0014 0057

1and
. .
. . ⎥

The residual variance for parents, s ep
2 350= and because both parents of

non-parents in the data are known:

s sen e g2 2 1
2 11

1
2350 150 425= + = + =( ) ( )
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with:

R =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

I

I

ep

en

s

s

2

2

0

0

Then:

R = diag(350, 350, 350, 350, 350, 425, 425, 425, 425, 425)

and:

R− =1 000286 000286 000286 000286 000286
0

diag( . , . , . , . , . ,
. , . , . , . , . )00235 000235 000235 000235 000235

The inverse of the variance of permanent environmental effect is:

1 00252 1
40/ .s pe = =

SETTING DESIGN MATRICES

The matrix X, which relates records to fixed effects, is the same as in
Section 6.1.1. The matrix ′ −X R X1 in the MME can be calculated through
matrix multiplication from X and R−1 already set up. For illustrative pur-
poses, the matrix X R X′ −1 , when expressed as the sum of the contributions
from parents’ and non-parents’ records, is:

′ = ′ + ′−X R X r X X r X X1 11 11
p p p n n n

=

00114 00 00 00057 00057
00 00029 00 00029 00
00 0

. . . . .

. . . . .

. . . . .

. . . . .

. . . .

0 00 00 00
00057 00029 00 00086 00
00057 00 00 00 00057

00 00 00 00 00
00 00047 00

.

. . . . .

. . .
⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+
00 00047

00 00 00071 00024 00047
00 00 00024 0002

. .
. . . . .
. . . . 4 00

00 00047 00047 00 00094
.

. . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

00114 00 00 00057 00057
00 00076 00 00029 00047
0

. . . . .

. . . . .

. . . . .

. . . . .
0 00 00071 00024 00047

00057 00029 00024 00109 00
00057 00047 00047 00 00151. . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

where Xp and Xn are matrices relating parents and non-parents to fixed
effects, respectively, and are:

′ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

′X Xp

1 1 1 1 0
0 0 0 0 1
0 0 0 0 0
1 0 0 1 1
0 1 1 0 0

and n =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

0 0 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 0 1 0
1 1 1 0 1
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The matrix Z1, which relates records to animal effect, is:

1 2 3 4 5 6 7 8 9

5
6
7
8
9

10
11
12
13
14

00 00 00 00 10 00 00 0

1Z =

. . . . . . . .0 00
00 00 00 00 00 10 00 00 00
00 00 00 00 00 00 1

.
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . .

0 00 00
00 00 00 00 00 00 00 10 00
00 00 00 00 00 00 00 00 10
00 05 05 00 00 00 00 00 00
00 00 05 0

. . . .
. . . . . . . . .
. . . .0 00 00 05 00 00

00 00 00 00 00 00 05 05 00
00 05 0

. . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

0 00 00 00 00 00 05
00 00 05 00 00 05 00 00 00

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The first five rows correspond to animals 5 to 9, which are parents and each
has one record. The last five rows correspond to the records for animals 10
to 14 (non-parents), which are related to their parents. The matrices Z2 and
Z3 are exactly the same as W and S in Section 6.1.1, respectively, and the
vector of observation, y, is the same as in Section 6.1.1. Apart from the rela-
tionship matrix, all the matrices in the MME can easily be calculated
through matrix multiplication from the design matrices and vector of obser-
vation set up above. The inverse of the relationship matrix is set up only for
parents (A p

−1), that is, for animals 1 to 9, using the procedure outlined in
Chapter 2. The matrix A gp

−1 11 is added to animal equations, A gp
−1 22 to the

equations for maternal genetic effects, A gp
−1 12 to the animal by maternal

genetic equations, A gp
−1 21 to the maternal genetic by animal equations and

1 2/s pe to the diagonals of the equations for permanent environmental
effects to obtain the MME. The MME are not presented because they are
too large. Solving the MME by direct inversion with the equation for the
first herd set to zero gives the same solutions as from the animal model
(Example 6.1). However, the number of non-zero elements in the coefficient
matrix was 329 compared with 429 in the animal model, due to the reduced
number of equations, indicating the advantages of the RAM.

BACK-SOLVING FOR NON-PARENTS

The solutions for direct animal and maternal effects for non-parents are
back-solved after the MME have been solved.

BACK-SOLVING FOR DIRECT EFFECTS. Solutions for direct animal effect for the
non-parents are obtained from parent average and an estimate of
Mendelian sampling, using equation [3.9] but with k expressed as in
[3.26]. Thus the solution for the non-parent i is:

$ . ( ) ( $ $ $ . ( $ $ ))u u u k y b m pe u ui s d i i j d d s d= + + − − − − +05 05 [6.8]
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with:

k r r d g di e a= + = + =− − − − −1 1 1 1 1 2 21 1/( ) /( ); /a a s s

where d is either 1
2 if both parents are known or 3

4 if only one parent is
known. For the example data, both parents of the non-parent individuals
are known; therefore:

k i = + =1 1 2 2333 017647/( ( . )) .

For animal 10, for instance, the breeding value is:

$ . ( $ $ ) ( $ $ $ $ . ( $ $u u u k y b b m pe u10 3 2 10 2 5 2 2 305 05= + + − − − − − + u2 ))

= + − + − − − −05 1165 1244 017647 22 3386 27691 1583. ( . . ) . ( . . ( . )
( . ) . ( . ( . )))− − − + −1701 05 1165 1244

= −1055.

BACK-SOLVING FOR MATERNAL EFFECTS. The equation for obtaining genetic mater-
nal effects for non-parents can be derived as follows. From the MME, the
equation for direct and genetic maternal effects for non-parent i is:

r n g n g

n g n g

u

m
i

i

− − −

− −

−

+⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥

=

1 1 11 1 12

1 21 1 22

1

$

$

G k
u u

m m
r y b m pes d

s d

i i dam dam
2

1

0

$ $

$ $

$ $ $+
+

⎡

⎣
⎢

⎤

⎦
⎥ + − − −⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥

[6.9]

where n is defined in equation [6.8] and other terms are as defined in [6.4].
From the above equations:

$ [ ( $ $ ) ( $ $ ) ( $ )]/m g m m g u u n g u n gi s d s d i= + + + − − −22 21 1 21 1 22

$ ( $ $ ) [( ( $ $ ) $ )/ ]m n m m g n u u g u gi s d s d i= + + + −21 21 22

$ ( $ $ ) / ( ( $ $ ) $ )m n m m g g n u u ui s d s d i= + + + −21 22

Note that:

g g g g g g g g g g g g21 22
12 11 22 12 21 11 22 12 21 11/ [ /( )][( )/= − − − ]

= −g g12 11/

Therefore:

$ ( $ $ ) / ( $ ( $ $ ))m n m m g g u d u ui s d i s d= + + − +12 11 [6.10]

When both parents are known:

$ . ( $ $ ) ( / )( $ . ( $ $ ))m m m g g u u ui s d i s d= + + − +05 0512 11

For instance, for animal 10:

$ . ( $ $ ) ( / )( $ . ( $ $ ))m m m g g u u u10 3 2 12 11 5 3 205 05= + + − +
= + − + − − − + −05 0736 1583 40 150 1055 05 1165. ( . ( . )) ( / )( . . ( . ( 1244. )))
= −0153.
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The solutions for direct and maternal effects of all non-parents in the
example data (animals 10 to 14) applying equations [6.7] and [6.9] are
exactly the same as those obtained for these animals in the animal model.

6.3 Multivariate Maternal Animal Model

In this section, the principles of a multivariate maternal animal model are
briefly outlined considering two traits affected by both direct and mater-
nal genetic effects. Due to the fact that it is a straightforward extension
of the univariate model and because of the large sizes of the matrices
involved, only the model, the assumptions and the MME have been
presented.

In general, the model for such multivariate analysis for two traits is:

y
y
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X

b
b
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Z

u
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[6.11]

where yi = vector of observations for the ith trait, bi = vector of fixed effects
for the ith trait, ui = vector of random animal effects, mi = vector of random
maternal (indirect) genetic effects, pei = vector of permanent environmen-
tal effects, ei = vector of random residual effects, and Xi, Zi, Wi and Si are
incidence matrices relating records of the ith trait to fixed, animal, maternal
genetic and permanent environmental effects, respectively.

It is assumed that:
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[6.12]

In [6.12], gij are the elements of G and gij is the additive genetic covariance
between variables i and j, where i = 1, 2 refer to direct effects for traits 1, 2
and i = 3, 4 refer to maternal effects for traits 1, 2; qij are elements of Q, the
variance and covariance matrix for permanent environmental effects, and
rij are elements of R, the variance and covariance matrix for residual
effects.
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The MME to be solved to obtain BLUP of u, m and pe and BLUE of
estimable functions of b in [6.11] are:
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In the above equations or expressions, * denotes the direct product of the
matrices concerned. The MME above can easily be set up using the proce-
dures so far discussed in the text.
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7 Analysis of Longitudinal Data

In Chapter 4, the use of a repeatability model to analyse repeated
measurements on individuals was discussed and illustrated. The basic
assumption of the model was that repeated measurements were regarded
as expression of the same trait over time. In other words a genetic correla-
tion of unity was assumed between repeated measurements. The model
has been employed mostly in the genetic evaluation of milk production
traits of dairy cattle in most countries up to 1999 (Interbull, 2000). The
main advantages of this model are its simplicity, fewer computation
requirements and fewer parameters compared to a multivariate model
(see Chapter 5). However, the model has some drawbacks. First, test day
records within lactation are assumed to measure the same trait during the
whole lactation length and are used to compute 305-day yields. These test
day records are actually repeated observations measured along a trajec-
tory (days in milk) and the mean and covariance between measurements
change gradually along the trajectory. Several studies have reported that
heritability of daily milk yields varied with days in milk. In addition,
genetic correlations between repeated measurements usually tended to
decrease as the time between them increased (Pander et al., 1992). The
extension of test records to compute 305-day yields is unable to account
for these changes in the covariance structure. Secondly, the assumption
that 305-day yields across parities measure the same trait suffers from the
same limitations.

However, in beef cattle, repeated measurements of growth have been
analysed somewhat differently, with the assumption that measurements
are genetically different but correlated traits. Usually, a multivariate
model has been employed in the genetic evaluation of these traits. While
the multivariate model is an improvement on the repeatability model by
accounting for the genetic correlations among different records, it would
be highly over-parameterized if records were available at many ages or

© R.A. Mrode 2005. Linear Models for the Prediction of Animal Breeding Values,
2nd Edition (R.A. Mrode) 135
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time periods. For instance, not only will a multivariate model for daily
body weight up to yearly weight in beef cattle as different traits be over-
parameterized but it will be difficult to obtain accurate estimates of the
necessary genetic parameters.

An appropriate model for the analysis of repeated measurements over
time or age (also termed longitudinal data) should account for the mean
and covariance structure that changes with time or age and should be fea-
sible in terms of estimating the required genetic parameters. In 1994,
Schaeffer and Dekkers introduced the concept of the random regression
(RR) model for the analysis of test day records in dairy cattle as a means of
accounting for the covariance structure of repeated records over time or
age. Almost at the same time, Kirkpatrick et al. (1990, 1994) introduced
covariance functions (CF) to handle the analysis of longitudinal data,
illustrating their methodology with growth data. The application of RR
models in animal breeding for the analysis of various types of data has
been comprehensively reviewed by Schaeffer (2004). Prior to the develop-
ment of the RR model for genetic evaluation, milk yield test day records
were analysed by Ptak and Schaeffer (1993) using a fixed regression
model. Initially, the details of this model are discussed and illustrated in
the next section, followed by its extension to an RR model. This is then
followed by a brief presentation of CF, and the equivalence of the RR
model and CF is demonstrated.

7.1 Fixed Regression Model

The theoretical framework for the fixed regression model and its applica-
tion for the analysis of longitudinal data such as test day milk production
traits were presented by Ptak and Schaeffer in 1993. At a national scale, a
fixed regression model was implemented for the genetic evaluation of test
day records of milk production traits and somatic cell counts in Germany
from the 1995 until 2002. The model involved the use of individual test
day records, thereby avoiding the problem of explicitly extending test day
yields into 305-day yield, and accounted for the effects peculiar to all
cows on the same test day within herds (herd–test–day (HTD) effect).
Therefore corrections for temporary environmental effects on the day of
test are more precise compared to evaluations based on 305-day yields.
The model also accounted for the general shape of the lactation curve for
groups of cows of similar age, calving in the same season and region. The
latter is accomplished by regressing lactation curve parameters on days in
milk (hence the name of the model) within the groupings for cows.
The inclusion of the curve therefore allows for the correction of the
means of test day yields at different stages of lactation. Fitting residual
variances relevant to the appropriate stage of lactation could also account
for the variation of test day yields with days in milk. The only major
disadvantage is that the volume of data to be analysed is much larger,
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especially in the dairy situation, as ten or more test day observations are
stored relative to a single 305-day yield.

Similarly to the repeatability model, at the genetic level the fixed
regression model assumes that test day records within a lactation are
repeated measurements of the same trait, that is, a genetic correlation of
unity among test day observations. Usually the permanent environmental
effect is included in the model to account for environmental factors with
permanent effects on all test day yields within lactation.

The fixed regression model is of the form:

y htd etij i tjk k j j tij
k

nf

= + + + +
=
∑ f b u pe

0

where y tij is the test day record of cow j made on day t within
herd–test–date (htd) subclass i; bk are fixed regressions coefficients; uj

and pej refer to animal additive genetic and permanent environmental
effects, respectively, for animal j; ftjk is of the kth Legendre polynomi-
als or any other curve parameter, for the test day (TD) record of cow j
made on day t; nf is the order of fit for Legendre polynomials used to
model the fixed regressions (fixed lactation curves); and etij is the ran-
dom residual. In matrix notation, the model may be written as:

y Xb Qu Zpe e= + + + [7.1]

where y is the vector of TD yields, b is a vector of solutions for HTD and
fixed regressions, u and pe are vectors of animal additive genetic and
permanent environmental effects, respectively. The variances of u and
pe are as defined in [4.1]. The matrices X, Q and Z are incidence matrices
and are described in detail in the next section, which illustrates the
application of the model. It is assumed that var(u) = Asu

2, var(pe) = Is p
2,

and var(e) = Is e
2 = R. The mixed model equations (MME) for equation [7.1]

are:
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with:

a s s a s s1
2 2

2
2 2= =e u e p/ /and

7.1.1 Illustration

Example 7.1
Given in Table 7.1 are the test day fat yields of five cows in a herd with
details of HTD and days in milk (DIM). The aim is to estimate solutions for
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HTD effects, regression coefficients for a fixed lactation curve fitting
Legendre polynomials of order 4, solutions for permanent environmental
effects and breeding values for animal effects using equation [7.1].
Assume that the pedigree structure is the same as in Example 4.1 and that
the estimated variances for additive genetic effects, permanent environ-
mental effects and residual variances were 5.521 kg2, 8.470 kg2 and 3.710
kg2, respectively. Then:

a s s1
2 2 3710 5521 0672= = =e u/ . / . .

and:

a s s2
2 2 3710 8470 0438= = =e p/ . / . .

The modelling of the fixed lactation curve by means of Legendre poly-
nomials implies the need to compute F, which is the matrix of Legendre
polynomials evaluated at the different DIM. The matrix F is of order t (the
number of DIM) by k (where k is the order of fit) with element fij = fj(at),
which is the jth Legendre polynomial evaluated at the standardized DIM
t (at). Therefore F = ML, where M is the matrix containing the polynomials
of the standardized DIM values and L is a matrix of order k containing the
coefficients of Legendre polynomials. The calculation of F is outlined in
Appendix G, and matrix F for Example 7.1 is shown in equation [g.1] in the
appendix.

SETTING UP THE INCIDENCE MATRICES FOR THE MME

In equation [7.1], let Xb X b X b= +1 1 2 2; then, in Example 7.1, the matrix X1,
which relates records to HTD effects, is of order ntd (number of TD records)

138 Chapter 7

Animals

4 5 6 7 8

DIM HTD TDY HTD TDY HTD TDY HTD TDY HTD TDY

4 1 17.0 1 23.0 6 10.4 4 22.8 1 22.2
38 2 18.6 2 21.0 7 12.3 5 22.4 2 20.0
72 3 24.0 3 18.0 8 13.2 6 21.4 3 21.0

106 4 20.0 4 17.0 9 11.6 7 18.8 4 23.0
140 5 20.0 5 16.2 10 8.4 8 18.3 5 16.8
174 6 15.6 6 14.0 9 16.2 6 11.0
208 7 16.0 7 14.2 10 15.0 7 13.0
242 8 13.0 8 13.4 8 17.0
276 9 8.2 9 11.8 9 13.0
310 10 8.0 10 11.4 10 12.6

DIM, days in milk; HTD, herd–test–day.

Table 7.1. Test day fat yields (TDY) for some cows in a herd.
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and is too large to be presented. However, ′X1X1 is diagonal and is:

′X1X1 = diagonal[3, 3, 3, 4, 4, 5, 5, 5, 5, 5]

The matrix X2 of order ntd by nf contains Legendre polynomials
(covariables) corresponding to the DIM of the ith TD yield. Thus the ith
row of X2 contains elements of the row of F corresponding to the DIM for
the ith record. The matrix X2, with rows for the first three TD records of
cow 4 and the last three TD records of cow 8, is:

07071 12247 15811 18704 21213
07071 09525 0644
. . . . .
. . .

− −
− 1 00176 06205

07071 06804 00586 07573 07757
− −

− − −
. .

. . . . .
M M M M M

07071 06804 00586 07573 07757
07071 09525 0
. . . . .
. . .

− − −
6441 00176 06205

07071 12247 15811 18704 21213
. .

. . . . .
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

and ′X2X2 is:

′ =

− −
−

X X2 2

209996 44261 40568 08441 87149
44261 246
. . . . .
. . 271 47012 111628 30641

40568 47012 310621 6660
− −

− −
. . .

. . . . 3 190867
08441 111628 66603 386470 88550
87149

.
. . . . .
.

− − −
−30641 190867 88550 482930. . . .−

⎡

⎣

⎢
⎢
⎢
⎢
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⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Considering only animals with records, Q = Z and is a matrix of order
5 (number of animals) by ntd. The matrix Q¢ could be represented as:

′ =

′
′

′
′

′
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⎢
⎢
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⎤

⎦

⎥
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Q

q 0 0 0 0
0 q 0 0 0
0 0 q 0 0
0 0 0 q 0
0 0 0 0 q

4

5

6

7

8

⎥
⎥
⎥
⎥

where ′qi is a vector of ones with size equal to the number of TD records
for the ith cow. The matrices Q¢Q and Z¢Z are both diagonal and equal.
Thus:

Q¢Q = Z¢Z = diag[10, 10, 5, 7, 10]

The matrix A−1 has been given in Example 4.1. The remaining matrices
in MME could be obtained as outlined in earlier chapters. Solving the MME,
with the solution for the tenth level of HTD effects constrained to zero,
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gives the following results:

Effects Solutions

Herd–test–day
1 10.9783
2 7.9951
3 8.7031
4 8.2806
5 6.3813
6 3.1893
7 3.3099
8 3.3897
9 0.6751

10 0.0000
Fixed regression coefficients

1 16.3082
2 −0.5227
3 −0.1245
4 0.5355
5 −0.4195

Animal effect
EBV for daily yield EBV for 305-day yield

1 −0.3300 −100.6476
2 −0.1604 −48.9242
3 0.4904 149.5718
4 0.0043 1.3203
5 −0.2449 −74.7065
6 −0.8367 −255.2063
7 1.1477 350.0481
8 0.3786 115.4757

Permanent environmental effects
Cow Solutions for daily yield Solutions for daily yield

4 −0.6156 −187.7634
5 −0.4151 −126.6150
6 −1.6853 −514.0274
7 2.8089 856.7092
8 −0.0928 −28.3035

EBV, estimated breeding value.

The solutions for the fixed regressions are regression coefficients from
which plots of lactation curves can be obtained. In practice, the fixed
regressions are usually fitted within a group of cows calving in the same
season in the same parity and of similar age. Thus, the curves obtained for
various groups of cows are useful for examining the influence of different
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environmental factors on lactation curves. In Example 7.1, one fixed lacta-
tion curve was fitted for all cows and a vector (v) of actual daily fat yield
(kg) from days 4 to 310 can be obtained as:

v b= =
==
∑∑F$ $fij j
j

nf

i

b2
14

310

where F is a matrix of Legendre polynomials evaluated from 4 to 310 DIM,
as described in Appendix G. From the above equation, v38, for instance, is:

v 38 207071 09525 06441 00176 06205 122001= − − − =[ . . . . . ]$ .b

For the DIM in the example data set, v is:

(DIM) 4 38 72 106 140 174 208 242 276 310
v = [10.0835  12.2001  12.6254  12.2077  11.5679  11.0407  10.9156  11.1111  11.2500  10.8297]

A graph of the fixed lactation curve can be obtained by plotting the
elements of v against DIM.

The estimated breeding value (BV) for animals and solutions for perma-
nent environmental effect obtained by solving the MME are those for daily
fat yield. To obtain estimated BV or solutions for pe effects on the nth DIM,
these solutions are multiplied by n. This is implicit from the assumptions
stated earlier of genetic correlations of unity among TD records. Thus esti-
mated BV for 305 days, shown in the table of results above, was obtained by
multiplying the solutions for daily fat yield by 305.

PARTITIONING BREEDING VALUES AND SOLUTIONS FOR PERMANENT
ENVIRONMENTAL EFFECTS

Similarly to the repeatability model, estimated breeding values of animals
can be partitioned in terms of contributions from various sources, using
equation [3.8]. The yield deviation (YD) for an animal is now calculated as
the average of corrected TD records. The correction is for effects of HTD,
fixed regressions and pe. Thus for cow 6 with five TD records, YD6 is:

YD 6
1

6 1 1 2 2= ′ ′ − − −−( ) ( $ $ $ )Q Q Q y X b X b pe

with:

y X b X b pe y6 1 1 2 2

104
123
132
116
84

− − − = =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

$ $ $

.

.

.

.

.

c

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

31893
33099
33897
06751
00000

.

.

.

.

.

⎥
⎥
⎥
⎥

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

100835
122001
126254
122077
115679

.

.

.

.

.

⎥
⎥
⎥
⎥
⎥
⎥

−

−
−
−
−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

16853
16853
16853
16853
16853

.

.

.

.

.

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

−
−
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

11875
15247
11298
04025
14826

.

.

.

.

. ⎥
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and:

YD c6
1

6
1
5

11875
15247
11298
04025

= ′ ′ = ′

−
−
−−( ) ( )

.

.

.

.

Q Q Q y q

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= − =

14826

49221 5

.

. / −09844.

Then the solution for additive genetic effect for animal 6 using equation
[3.8] is:

$ (( $ $ )/ ) ( )u u u6 1 1 5 2 62= + +w w YD
= − + − + − = −w w1 203300 02449 2 09844 08367(( . . )/ ) ( . ) .

with w1 = 2(0.672)/6.344, w2 = 5/6.344 and 6.344 = the sum of the numer-
ators of w1 and w2.

For animal 8 with ten TD records, the solution for additive genetic
effect is:

$ (( $ $ )/ ) ( )u u u8 1 1 7 2 82= + +w w YD
= − + + =w w1 203300 11477 2 03746 03786(( . . )/ ) ( . ) .

with w1 = 2(0.672)/11.344, w2 = 10/11.344 and 11.344 = the sum of the
numerators of w1 and w2. The weights on yield deviations were 0.7882
and 0.8815 for animals 6 and 8, respectively. This illustrates the fact that,
as the number of TD increases, more emphasis is placed on the perfor-
mance records of the animal. Considering animal 4 with ten TD records
and a progeny, her breeding value can be calculated as:

$ (( $ $ )/ ) ( ) ( $ . $ )u u u u u4 1 1 2 2 4 3 7 32 05= + + + −w w YD w
= − + − + − + −w w w1 2 303300 01604 2 00226 2 11477(( . . )/ ) ( . ) ( ( . ) 04934

00043
. )

.=

where w1 = 2(0.672)/11.68, w2 = 10/11.68 and w3 = 0.5(0.672)/11.68 and
11.68 is the sum of the numerators of w1, w2 and w3. There was a slight
reduction to the weight given to parent average from 0.1185 (animal 8) to
0.1151 (animal 4) due to the additional information from progeny.

The solution for pe of an animal can be calculated as in Section 4.1.2,
using equation [4.4]. Here the correction of the TD records is for the esti-
mates for HTD effects and fixed regressions and animal effect. Thus, for
cow 6, pe6 can be calculated as:

$

.

.

.

.

.

.

pe6

104
123
132
116
84

31893
3

= ′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−t
.
.
.
.

.

.3099
33897
06751
00000

100835
12

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−
2001

126254
122077
115679

08367

.

.

.

.⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

−
−08367

08367
08367
08367

.

.

.

.

−
−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= − = −
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91650 54380 16853

.

. / . .
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where t is a column vector of order 5 (number of TD records for the ani-
mal), with all elements equal to one. However, in contrast to pe estimates
in Example 4.1, these pe estimates represent permanent environmental
factors affecting TD records within lactation.

7.2 Random Regression Model

In Section 7.1, the advantage of including fixed regressions on days in
milk in the model was to account for the shape of the lactation curve for
different groups of cows. However, the breeding values estimated repre-
sented genetic differences between animals at the height of the curves.
Although different residual variances associated with different stages of
lactation could be fitted with the fixed regression model, the model did
not account for the covariance structure at the genetic level. Schaeffer
and Dekkers (1994) extended the fixed regression model for genetic
evaluation by considering the regression coefficients on the same
covariables as random, thus allowing for between-animal variation in
the shape of the curve. Thus the genetic differences among animals
could be modelled as deviations from the fixed lactation curves by
means of random parametric curves (see Guo and Swalve, 1997) or
orthogonal polynomials, such as Legendre polynomials (Brotherstone
et al., 2000), or even non-parametric curves, such as natural cubic
splines (White et al., 1999). Most studies have used Legendre polynomi-
als as they make no assumption about the shape of the curve and are easy
to apply. The RR model has also been employed for the analysis of
growth data in pigs (Andersen and Pedersen, 1996) and beef cattle
(Meyer, 1999). An additional benefit of the RR model in dairy cattle is
that it provides the possibility of genetic evaluation for persistence of
the lactation. A typical random regression model (RRM) especially for
the analysis of dairy cattle test day records is of the form:

y htdtijk i jtk k
k

nf

jtk jk
k

nr

jtk jk
k

n
= + + +

= = =
∑ ∑f b f f

0 0 0

u pe
r

tijke∑ +

where ytijk is the test day record of cow j made on day t within htd subclass
i; bk are fixed regression coefficients; ujk and pejk are the kth random
regression for animal and permanent environmental effects, respectively,
for animal j jtk; f is the kth Legendre polynomial for the test day record of
cow j made on day t; nf is the order of polynomials fitted as fixed regres-
sions; nr is the order of polynomials for animal and pe effects; and etijk is
the random residual. The model in matrix notation is:

y Xb Qu Zpe e= + + +

The vectors y, b and the matrix X are as described in Example 7.1. How-
ever, u and pe are now vectors of random regressions for animal addi-
tive genetic and pe effects. The matrices Q and Z are covariable
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matrices and, if only animals with records are considered, the ith row
of these matrices contains the orthogonal polynomials (covariables)
corresponding to the DIM of the ith TD yield. If the order of fit is the
same for animal and pe effects, Q = Z, considering only animals with
records. This would not be the case if the order of fit is different for ani-
mal and pe effects. In general, considering animals with records, the order
of either Q or Z is ntd (number of TD records) by nk, where nk equals nr times
the number of animals with records. It is assumed that var(u) = A⊗G,
var(pe) = I⊗P and var(e) = Is e

2 = R, where A is the numerator relationship
matrix, ⊗ is the Kronecker product and G and P are of the order of polyno-
mial fitted for animal and pe effects. The MME are:

′ ′ ′

′ ′ ⊗ ′

′ ′

− − −

− − − −

−

X R X X R Q X R Z

Q R X Q R Q A G Q R Z

Z R X Z

1

1 1 1

1 1 1

1

+

R Q Z R Z P

b
u
pe

X R y
Q

− −

−

′ +

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
′
′

1 1

1$

$

$

R y
Z R y

−

−′

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

1

7.2.1 Numerical application

Example 7.2
Analysis of the data in Table 7.1 is undertaken fitting an RR model with
Legendre polynomials of order 4 fitted for the fixed lactation curve and
Legendre polynomials of order 3 fitted for both random animal and pe
effects. The covariance matrices for the random regression coefficients for
animal effect and pe effects are:

G =
−
−

− −

3297 0594 1381
0594 0921 0289
1381 0289 100

. . .

. . .

. . . 5

6872 0254 1101
0254 3171 0167
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
− −

−
−

;
. . .
. . .
.

P
101 0167 2457. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and the residual variance equals 3.710 for all stages of lactation.
As indicated earlier, the above G or P matrix models the genetic or

permanent environment covariance structure of fat yields over the whole
lactation length. Thus the genetic covariance between DIM i and j along
the trajectory can be calculated from G. For instance, the genetic variance
for DIM i (vii) can be calculated as:

v ii i i= ′t Gt

where ti = fik, the ith row vector of F, for day i, and k is the order of fit.
The genetic covariance between DIM i and j (vij) therefore is:

v ii i j= ′t Gt

Using the G matrix in Example 7.2, the genetic variance for DIM 106
equals 2.6433 kg2, with t106 = [0.7071 −0.4082 −0.5271], and the genetic
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covariance between DIM 106 and 140 equals 3.0219 kg, with t140 = [0.7071
−0.1361 −0.7613]. Similar calculations can be carried out using p. The
plots of daily genetic and permanent environmental variances against
DIM are shown in Fig. 7.1, indicating how these variances change through
the lactation length.

SETTING UP THE MATRICES FOR THE MME

The setting up of the matrix X has been described in Example 7.1. The
matrix X¢R−1X can easily be obtained by matrix multiplication. Consider-
ing only animals with records, Q¢ can be represented as:

′ =

′
′

′
′

′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

Q

Q 0 0 0 0
0 Q 0 0 0
0 0 Q 0 0
0 0 0 Q 0
0 0 0 0 Q

4

5

6

7

8

⎥
⎥
⎥
⎥

where ′Q i is the matrix of order nr by k (number of TD records for animal i).
Thus for animal 6, ′Q 6 is:

′ = − − −Q 6

07071 07071 07071 07071 07071
12247 09525 0
. . . . .
. . . . .
. . . . .

6804 04082 01361
15811 06441 00586 05271 076

− −
− − − 13

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

For all animals with records, Q¢R−1Q = Z¢R−1Z and are block diago-
nals. For instance, Q¢R−1Q for the first three cows (cows 4, 5 and 6) with
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records is:

1348 0000 0335 0 0 0 0 0 0
0000 1647 0000 0 0 0 0 0 0
0335 00

. . .

. . .

. . 00 2035 0 0 0 0 0 0
0 0 0 1348 0000 0335 0 0 0
0 0 0 0000 1647 00

.
. . .
. . . 00 0 0 0

0 0 0 0335 0000 2035 0 0 0
0 0 0 0 0 0 0674 0648 0167
0 0

. . .
. . .−

0 0 0 0 0648 0824 0591
0 0 0 0 0 0 0167 0591 1018

− −
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

. . .

. . .

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

When all animals are considered, Q¢R−1Q is augmented by nr columns
and rows per ancestor without records (that is, animals 1–3). The matrix
A−1⊗G−1 is then added to Q¢R−1Q and P−1 added to Z¢R−1Z to obtain the
MME. Solving the MME by direct inversion with the solution for level 10
of HTD effects constrained to zero gave the following results:

Effects Solutions

Herd–test–day
1 10.0862
2 7.5908
3 8.5601
4 8.2430
5 6.3161
6 3.0101
7 3.1085
8 3.1718
9 0.5044

10 0.0000
Fixed regression

1 16.6384
2 −0.6253
3 −0.1346
4 0.3479
5 −0.4218

Animal Regression coeffients
305-day

breeding value
1 −0.0583 0.0552 0.0442 −12.3731
2 −0.0728 −0.0305 −0.0244 −15.7347
3 0.1311 −0.0247 0.0686 28.1078
4 0.3445 0.0063 −0.3164 74.8132
5 −0.4537 −0.0520 0.2798 −98.4153
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(Continued)

Effects Solutions

Animal Regression coeffients
305-day

breeding value
6 −0.5485 0.0730 0.1946 −118.4265
7 0.8518 −0.0095 −0.3131 184.1701
8 0.2209 0.0127 −0.0174 47.6907

Permanent environmental effects

Cow Regression coefficients
305-day
solutions

4 −0.6487 −0.3601 −1.4718 −138.4887
5 −0.7761 0.1370 0.9688 −168.5531
6 −1.9927 0.9851 −0.0693 −427.2378
7 3.5188 −1.0510 −0.4048 756.9415
8 −0.1013 0.2889 0.9771 −22.6619

The solutions for HTD and fixed regression for the RRM are similar to
those from the fixed regression model. Lactation curves can be constructed
from the fixed regression, as described in Section 7.1.1, and influences of
different environmental factors on the curves can be evaluated. Each animal
has nr regression coefficients as solutions for animal and permanent envi-
ronmental effects. These are not useful for ranking animals and need to be
converted to breeding values for any particular day of interest. Usually, in
dairy cattle, values are calculated for 305 days’ yield and these have been
shown above in the table of results. The estimated breeding value from days
6 to m for animal k (EBVkm) is calculated as:

EBV tkm k j ij
j

nr

i

= =
==
∑tu t$ ; with containing elements f

06

m

∑ [7.2]

where t is a row vector of order nr, with the jth elements equal to the sum
of the jth orthogonal polynomial from days 6 to m, and $u k is a vector for
the regression coefficient of animal k. For Example 7.2, the matrix F for
days 4 to 310 has not been shown because of the size but can be generated
as described in Appendix G. Assuming 305-day breeding values are com-
puted from days 6 to 310, then the vector t for Example 7.2, calculated
from days 6 to 310, is:

t = [215.6655 2.4414 −1.5561]

The breeding value for the 305-day yield for animal 4, for instance, can be
calculated as:

tu$ [ . . . ]
.
.
.

4 2156655 24414 15561
03445
00063
03164

= −
−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

≈ 7481.
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Over the lactation length, daily breeding values can be computed for each
animal from the random regression coefficients. Genetic lactation curves
can be obtained for each animal by plotting these daily breeding values
against DIM and differences between curves for different animals can
then be studied. Let v be a vector containing daily breeding values for
days 6 to 310, then v can be calculated as:

v Tu T= = =
==
∑∑$ k ij ij
j

nr

i

t; with f
06

310

The plots of the daily breeding values for animals 2, 3 and 8 are
shown in Fig. 7.2. The plots indicate that the animal with the highest
305-day breeding value for fat yield also had the highest daily breeding
values along the lactation length.

If the trait being analysed is milk yield, persistence breeding values
can be calculated from the daily breeding values. For instance, persis-
tence predicted transmitting ability (PSPTA) for milk yield can be calcu-
lated (Schaeffer et al., 2000) as:

PS
PTA PTA y

yPTA = − +280 60 280

60
100( )

where PTA60 and PTA280 are predicted transmitting abilities for day milk
yield for an animal at days 60 and 280, respectively, and y 60 and y 280 are
the average milk yields of cows in the genetic base at days 60 and 280,
respectively.

7.2.2 Partitioning animal solutions from the random regression model

Equations for calculating the contribution of information from various
sources to the solutions (random regression coefficients) of an animal
from an RRM were presented by Mrode and Swanson (2004). These
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equations are the same as those presented in Section 5.1.3 for the multi-
variate model. Test day records of cows contribute to random regressions
for the animal effect through the yield deviations. The calculation of the
vector of yield deviations (YD) is first examined. Using the same argument
for deriving [5.7], the equation for YD for an RRM is:

YD Q R Q Q R y Xb Zpe= ′ ′ − −− − −( ) ( ( $ $ ))1 1 1 [7.3]

While this equation is similar to equation [5.6] for yield deviation under a
multivariate model, here YD is a vector of weighted regressions of the ani-
mal’s TD yields adjusted for all effects other than additive genetic effect.
Since YD is a vector of regressions, it can be used to generate actual yield
deviations for any DIM using equation [7.2]. Thus actual yield deviation
(yd*) for day m, for instance, equals v¢YD, where v is a vector of order nr
with v m mj= f and j = 1,nr. The actual yield deviation for 305-day yield
can be calculated using equation [7.2] but with û replaced with YD.

The calculation of YD for cow 6 in Example 7.2 is illustrated below.
First, the vector of TD records for cow 6 corrected for all effects (yc) other
than the additive genetic effect is:

y y X b X b pec = 6 1 1 2 2− − −$ $ $

y c

.

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

104
123
132
116
84

30101
3108.

.

.

.

.

. 5
31718
05044
00000

107725
125295

.

.

.

.

.
⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

− 127890
123454
117641

27251
239

.

.

.

.

.
⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

−
− 20

20752
17746
14904

06576
0

−
−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

−
−

.

.

.

.

.9460
06856
05249
18738

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

.

.

.

where $b 1 and $b 2 are vectors of solutions for HTD and fixed regression
coefficients. The matrices Q¢R−1Q and Q¢R−1yc are:

′ =
−

− −−Q R Q1

06738 06484 01674
06484 08235 05906
016

. . .

. . .

. 74 05906 10177

06934
059671

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′ =
−

−

−

. .

.

.and Q R y c

01237.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Using equation [7.3], yield deviation for cow 6 (YD6) is:

YD Q R Q Q R y6
1 1 1

50004
46419
19931

= ′ ′ =
−
−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

− − −( )
.
.
.

c
⎥
⎥
⎥

The actual yield deviation at 305 DIM for cow 6 using [7.2] with $u
replaced with YD6 is −1086.6450.

The equation for the partitioning of random regression coefficients
for animals to contributions for parent average, yield deviations and
progeny is:

$u W PA W YD W PCanim = + +1 2 3( ) [7.4]
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with:

PC u u W W W I= − + + =∑ ∑a aprog prog( ) and2 1 2 3$ $prog mate

This is the same equation as [5.8], which partitioned breeding values
under the multivariate model. The weights W1, W2 and W3 are as defined
in [5.8] but here Wi is of the order of orthogonal polynomials for animal
effects. Illustrating with cow 6, the weights on parent average (W1) and
yield deviation (W2) can be calculated as:

W1

21520 09957 20986
09957 32921 03580
20986 0

=
−

− −
−

. . .

. . .

. . .

. . .

.
3580 57284

14781 03473 19313
03473 2

1⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
−

−

. .
. . .

4685 02326
19313 02326 47107

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )′ +− − −Q R Q G1 1
6

1a ( )2 1G − apar

=
06156 01940 02987
00935 08107 02402
01175 00202 0

. . .

. . .

. . .7279

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(W1)

and:

W2

21520 09957 20986
09957 32921 03580
20986 0

=
−

− −
−

. . .

. . .

. . .

. . .

.
3580 57284

06738 06484 01674
06484 0

1⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
−

−

. .
. . .

8235 05906
01674 05906 10177

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )′ +− − −Q R Q G1 1
6

1a ( )′ −Q R Q1

=
− −

− −
− −

03844 01940 02987
00935 01893 02402
01175 0

. . .

. . .

. . .0202 02721

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(W2)

The contributions from PA (parent average) and YD to the random regres-
sion coefficients for cow 6 are:

$

$

$

.

.

.

u

u

u

0

1

2

1

02560
00016
01178

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥W
⎥

+
−
−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

W2

50004
46419
19931

01221
00057
0

.

.

.

.

.

.

.

.

.

.

0557

04265
00674
01389

05⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
− 485

00730
01946
.
.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

For cow 8 with ten TD records and no progeny, equation [7.4] is:

$

$

$

. . .

. .
u

u

u

0

1

2

03893 00844 01763
00604 05903

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
−

− 00353
01576 00425 06379

03967
00228
0178

.
. . .

.

.

.

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

− 7

06107 00844 01763
00604 04097 00353
0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+
−
−

−

. . .

. . .

. . .

.

.

.1576 00425 03621

02102
00574
01893−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(W1) (PA) (W2) (YD8)
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and:

$

$

$

.

.

.

u

u

u

0

1

2

01210
00168
00505

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡00998
00295
00330

02208
00127
00175

.

.

.

.

.

.⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Considering cow 4, with ten TD records and a progeny:

$

$

$

. . .

. .
u

u

u

0

1

2

03488 00684 01393
00490 05132

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
−

− 00284
01245 00343 05451

00655
00123
003

.
. . .

.

.

.

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−

− 43

05640 00856 01741
00613 03585 00355

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+
−
−

−

. . .

. . .
01557 00428 03186

02711
00508
06412. . .

.

.

.−
−
−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(W1) (PA) (W2) (YD)

+
−

−
00872 00171 00348
00123 01283 00071
00311 0008

. . .

. . .

. . 6 01363

15725
00057
06948.

.

.

.

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−

(W3) (PC)

$

$

$

.

.

.

u

u

u

0

1

2

00285
00086
00264

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+ −
−

02602
00212
02443

01128
00235
0045

.

.

.

.

.

. 7

03445
00063
03164

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

.

.

Equation [7.4] is useful in explaining the evaluations for animals in
terms of contributions from different sources of information, and how
these contributions vary with different DIM could also be examined.
However, equation [7.4] relates to random regression coefficients. Usually
the estimated breeding value at a particular stage of the longitudinal scale,
such as 305 days for milk yield or body weight at 1 year of age, is pub-
lished. Therefore the interest might be in calculating the contributions
from the various sources of information to the published EBV. Using milk
yield as an example, the contribution to 305-day estimated BV from vari-
ous sources of information can be calculated as:

$u V PA V YD V PC(305) 1anim = + +2 3
= + +PA YD PC* * * [7.5]

where Vi = DWi, with D being a diagonal matrix such that dii = ti, with ti

being the element of the row vector t in [7.2], PA* = V1PA, YD* = V2YD
and PC* = V3PC, and Wi as defined in [7.4]. However, V1 + V2 + V3 ≠ I.
Thus the estimated BV at 305 days (BV(305)anim) from [7.5] is:

BV u PA YDanim anim
i

nr

i
i

nr

i
i

nr

( ) ( )
* *$305 305

1 1 1

= = +
= = =
∑ ∑ ∑ ∑+

=
PC i

i

nr
*

1

where the contributions to the estimated BV at 305 days from PA, YD and
PC are:

PA YD PCi
i

nr

i
i

nr

i
i

nr
* * *,

= = =
∑ ∑ ∑

1 1 1

and , respectively
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Using [7.5], the contributions from various sources of information can be
calculated for EBV at days or ages j to n along the longitudinal scale and this
could be plotted to examine how the contributions vary with days or age.

Using cow 6 in Example 7.2, the matrix D used in calculating the V
terms in [7.5] is:

D = diag(215.6655, 2.4414, −1.5561)

Using the W1 and W2 calculated earlier for cow 6:

V DW1 1

1327637 418391 644193
02283 19792 05864
0

= =
−

. . .

. . .

.1828 00314 11327− −

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟. .

V DW2 2

829018 418391 644193
02283 04622 05864= =

− −
− −

. . .

. . .
01828 00314 04234. . .−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

$

.

.

.
( )u V PA V YD305 6 1 2

263320
00138
01178

= + =
−⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

+
−

−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

919351
01649
02160

.

.

.

Therefore contributions from PA and YD are −26.4049 and −91.9862,
respectively. Then:

BV(305)6 = −26.4049 + −91.9862 = −118.4

Thus contribution from parent average is about 22% of the EBV at 305 days.

7.2.3 Calculating daughter yield deviations

The equation for calculating daughter yield deviation under an RRM is
the same as [5.12] presented for the multivariate models. However, with the
RRM, DYD in [5.12] is a vector of random regression coefficients and the
weights M1, M2 and M3 are of the order nr. Actual daughter yield devia-
tion (DYD) for any DIM can be generated using equation [7.2].

As indicated in Section 5.1, for ease of computation, W2prog in [5.12] is
pre-multiplied with G−1, such that the equation for DYD becomes:

DYD G W 2YD u G W= −− −∑ 1
2

1
2prog prog mate prog proga a( $ )/

7.2.4 Reliability of breeding values

The reliability of an estimated BV depends on its prediction error vari-
ance (PEV) relative to the genetic variance. It can therefore be regarded as
a statistic summarizing the value of information available in calculating
the estimated BV. The published estimated BV from an RR model is
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usually a linear function of the random regression coefficients obtained
by solving the MME. The principles for calculating PEV and reliability
under this situation are presented, using the diagonal elements of the
inverse of the coefficient matrix of the MME for Example 7.2.

Let k¢ui define the estimated BV for the trait of interests for animal i
from the RR model. The vector k = wit, where wi might be the weighting
factor for the ith age or lactation if the study was on body weight at several
ages or fat yield in different lactations analysed as different traits. For
instance, if fat yields in lactations 1 and 2 were analysed as different
traits, ′w i might be [0.7 0.3], indicating a weight of 0.7 and 0.3, respec-
tively, for first and second lactation estimated BV. The vector t defines
how within lactation estimated BV was calculated and is the same as in
[7.2]. For Example 7.2, wi is a scalar with a value of 1. Given that G is the
additive genetic covariance matrix for random regression effect for animal
effects and P is the covariance matrix for pe effects, then the additive
genetic variance of k¢u = g = k′Gk and the variance for the pe effect for the
trait of interest k¢pe = p = k¢Pk. The heritability of k¢u can therefore be
calculated as g/(g + p + e) and a = (4 − h2)/h2.

Let Cii be the subset of the inverse of MME corresponding to the genetic
effect for the ith animal. Then, for animal i, prediction error variance
( )PEVi

ii= ′k C k. The reliability of k u′ can therefore be calculated as
(1 − PEVi)/g. As an illustration, in Example 7.2, k¢ = wt = [215.6655 2.4414
−1.5561], g = k¢Gk = 154896.766 kg2, p = k¢Pk = 323462.969 kg2 and h2 =
0.32. For animal 1, the matrix C11 is:

C11

29911 05159 12295
05159 08683 02480
02295

=
−
−

− −

. . .

. . .

. 02480 09183. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and:

PEV1
11 14049997= ′ =k C k .

Therefore reliability for animal 1 equals 1 – 140499.97/154896.766 = 0.09.
The reliabilities for the animals in Example 7.2 are as follows:

Animal Reliability

1 0.09
2 0.04
3 0.07
4 0.12
5 0.15
6 0.06
7 0.10
8 0.05
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In practice, calculating the inverse of the MME is not feasible for large
populations and PEV has to be approximated. As indicated earlier, esti-
mated BV from RR models are linear functions of the random regressions;
therefore methods to approximate reliabilities should simultaneously
approximate PEV and the prediction error covariance (PEC) among the
individual random regressions (Liu et al., 2002; Meyer and Tier, 2003).
Such an approximation method, presented by Meyer and Tier (2003), is
outlined in Appendix D.2.

7.2.5 Random regression model for maternal traits

Maternal genetic effects are important in growth traits in beef cattle, and
models that account for these effects have been discussed in Chapter 6.
However, the RR model could also be augmented to include random
regressions for maternal genetic and maternal permanent environmental
effects. Albuquerque and Meyer (2001) examined different orders of fit for
the random regressions for both effects. One of the favoured models was the
one in which the order of Legendre polynomials for direct genetic, mater-
nal genetic, animal pe and maternal pe effects were 5, 5, 5 and 3, respec-
tively. Such a model, excluding all fixed effects, could be written as:

y u m peijktd jti ji
i

k

jti ji
i

k

jti ji d= + + +
=

−

=

−

∑ ∑f f f f
0

1

0

11 2

ti di ijktd
i

k

i

k
pp e+

=

−

=

−

∑∑
0

1

0

1 43

where yijktd is the body weight of cow j taken at age t that has a dam d; uji,
mji and peji are random regressions for direct, maternal genetic and animal
pe effects for animal j, respectively; ppdi is the random regression for
dam pe effects and eijktd is random error, fjti and fdti are the ith Legendre
polynomial for body weight at age t for cow j and dam d, respectively.
Albuquerque and Meyer (2001) assumed a zero covariance between direct
and maternal genetic effects to simplify the computation. The variance
for direct effects increased from birth to 365 days, while maternal
genetic variance increased from birth to about 115 days and decreased
thereafter.

7.3 Covariance Functions

Kirkpatrick et al. (1990, 1994) introduced the concept of analysing
repeated records taken along a trajectory such as time or age by means of
covariance functions. In view of the fact that such a trait can take on a
value at each of an infinite number of ages and its value at each age can be
regarded as a distinct trait, the trajectory for such a trait could be regarded
as an infinite-dimensional trait. Thus the growth trajectory or milk yield
trajectory of an individual could be represented by a continuous function.
Covariance function describes the covariance structure of an infinite-
dimension character as a function of time. Therefore the covariance
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function is the infinite-dimension equivalent of a covariance matrix for a
given number of records taken over time at different ages. The value of the
phenotypic covariance function, Þ(ti, tj), gives the phenotypic covariance
between the value of the trait at ages ti and tj. Similarly, the value of the
additive genetic covariance function, f(ti, tj) gives the additive genetic
covariance between the value of the trait at ages ti and tj. In mathematical
terms, given t ages, the covariance between breeding values ul and um on
an animal at ages al and am could be written as:

cov( , ) ( , ) ( ) ( )u u f a a a a Cl m i m i l j m ij
j

k

i

k
= =

=

−

=

−

∑∑ f f
0

1

0

1
[7.6]

=
=

−

=

−

∑∑ t ij l
i

m
j

j

k

i

k
a a

0

1

0

1
[7.7]

where f with factors tij is the covariance function (CF), C is the coefficient
matrix associated with the CF with elements Cij, al is the lth age standard-
ized to the intervals for which the polynomials are defined and k is the
order of fit. Kirkpatrick et al. (1990, 1994) used Legendre polynomials,
which span the interval −1 to +1. The ages can be standardized as
described in Appendix G.

Given that G is the observed genetic covariance matrix of order t, and
assuming a full-order polynomial fit, (t = k), [7.6] can be written in matrix
notation as:

$ $G C= ′F F [7.8]

and $C can be estimated as:
$ $ ( )C G= − −F F1 1 [7.9]

where F is the matrix of Legendre polynomials of order t by k with
element f fij j at

= ( ) = the jth polynomial evaluated at standardized age t.
As an illustration, assume body weight measurements in beef cattle

have been taken at three different ages – 90, 160 and 240 months old – and
that the genetic covariance matrix ( $ )G estimated was:

$
. . .
. . .
. . .

G =
⎡

⎣

1323 1270 1366
1270 1728 2008
1366 2008 2880

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Using the method described in Appendix G, the vector of standardized
ages is:

a¢ = [−1.0 −0.0667 1.000]

and M becomes:

M =
−
−

10000 10000 10000
10000 00667 00044
10000 100

. . .

. . .

. . 00 10000.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Thus for t = 3, L (see Appendix G) is:

L =

07071 00000 07906
00000 12247 00000
00000 0000

. . .

. . .

. .

−

0 23717.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and F is:

F =
−
− −

07071 12247 15811
07071 00816 07801
07071 12

. . .

. . .

. . 247 15811.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and from [7.9], the coefficient matrix $C is:

$
. . .
. . .
.

C =
−
−

−

3447117 452787 32062
452787 245185 01475

32062 01475 32768−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥. .

The covariance between two different ages can be calculated using [7.8].
For instance, the variances at days 90 and 200 of body weight and the
covariance between body weight on both days are F F90 90

$ . ,C ′ = 13230
F F F F200 200 90 200

$ . , $ .C C′ = ′ =21850 12971, respectively, with:

F L90 = = −m 90 07071 12247 15811[ . . . ]

and:

F L200 = = −m 200 07071 05716 02740[ . . . ]

where mi are the appropriate row vectors of the matrix M.
Also from [7.8] and Appendix G, $G can be written as:

$ $G M C M= ′ ′L L

Therefore $G MTM= ′ with T C= L L$ . Then T can be calculated as
T M G M= ′− −1 1$ ( ) , where T is the matrix with elements t ij in [7.7]. Substi-
tuting T in [7.7] the full estimate of the CF, f(al, am), can be obtained.
Using the example data:

T =
−
−

− −

17799 3935 1152
3935 3678 043
1152 043 1843

. . .

. . .

. . .

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Therefore the full estimate of the covariance function, f(al, am), is:

f a a a a a a a al m l m l m l( ) . . ( ) . . (, = + + + − +17799 3935 3678 1152 2
m
2 )

− + +043 18432 2 2 2. ( ) .a a a a a al m l m l m

The application of CF in genetic evaluation involves defining an
equivalent model using [7.8]. For instance, using the example of the body
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weight of beef cattle, assume that the multivariate model for observations
measured on one animal is:

y = Xb + a + e

where y, X, b, a and e are matrices and vectors defined as in equation
[5.1], with t = i, var ( )a G=

(
and var(e) = R. Assuming a CF has also been

fitted for the covariance matrix for environmental effects with a term
included to account for measurement error, then:

R C= ′ +F F Ip s 2e

where Cp contains the coefficient matrix associated with the CF for pe and
variance e is Is 2e. Using this equation and [7.8], an equivalent model to
the multivariate model can be written as:

y Xb u pe= + + +F F e

where a = Fu; and u and pe are now vectors of random regression coeffi-
cients for random animal and pe effects. Then var( )u C= ′F F (see [7.8])
and var( )pe C= ′ ′F Fp . The application of the above model in genetic eval-
uation is as illustrated in Example 7.2. Thus the breeding value an for any
time n can be calculated (see [7.2]) as:

a tn i n
i

k

i=
=

−

∑ f ( )
0

1
u

where f( )t n is the vector of Legendre polynomial coefficients evaluated at
age tn.

Thus, with a full-order fit, the covariance function model is exactly
equivalent to the multivariate model. However, in practice, the order of fit
is chosen such that estimated covariance matrix can be appropriately fit-
ted with as few parameters as possible. In the next section, the fitting of a
reduced-order CF is discussed.

7.3.1 Fitting a reduced-order covariance function

Equation [7.8] and the illustration given in the above section assumed a
full-order polynomial fit of G (k = t). Therefore it was possible to get an
inverse of F and hence estimate C. However, for a reduced-order (k < t) fit,
F has only k columns and a direct inverse may not be possible. With the
reduced fit, the number of coefficients to be estimated are reduced to
k(k + 1)/2. This is particularly important for large L, such as test day
milk yield within a lactation with t equal to 10 or 305 assuming monthly
or daily sampling and requiring t(t + 1)/2 coefficients to be estimated.
Thus a reduced-order fit with k substantially lower than t could be very
beneficial.

Kirkpatrick et al. (1990) proposed weighted least squares as an effi-
cient method to obtain an estimate of the reduced coefficient matrix ( )C
from the linear function of the elements of

(
G. They outlined the following

steps for the weighted least-square procedure. The procedure is
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illustrated using the example
(
G for the body weight in beef cattle given

earlier, fitting polynomials of order one; that is, only the first two
Legendre polynomials are fitted, thus k = 2. Initially, a vector (g of order t2

is formed by stacking the successive columns of
(
G. Thus:

( (
K

( (
K

( (
K

(
′ =g [ ]G G G G G G11 1 12 2 1, , , , , , , ,n n n nn

Thus, for the example
(
G:

( ′ =g [ . . . . . . . . .1323 1270 1366 1270 1728 2008 1366 2008 2880]

Define Fr of order t by k, obtained by deleting (t – k) columns of F?
corresponding to those fj not in the reduced-order fit. The relationship
between the observed covariance matrix, (g, and the coefficient matrix of
the reduced fit to be estimated is given by the following regression
equation:

(g X e= s c + [7.10]

where e is the vector of difference between observed covariances and those
predicted by the covariance function, $c is a vector of dimension k2, contain-
ing the elements of the coefficient matrix of the reduced fit (C). The order
of elements of C in c is the same as in (g; that is,

′ =c [ )C C C C00 0 1, , , , , ,K K Kk k kk . Xs is the Kronecker product of Fr with
itself ( )X s r r= ⊗F F and is of the order t2 by k2. Since only the first two
polynomials are fitted, the matrix Fr can be derived by deleting from F
the third column, corresponding to the missing second-degree polyno-
mial. Thus for the beef cattle example:

Fr =
−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

07071 12247
07071 00816
07071 12247

. .

. .

. . ⎥

and Xs is:

X s =

− −
− −

05000 08660 08660 14999
05000 00577 08660 0
. . . .
. . . .
. . . .
. . .

0999
05000 08660 08660 14999
05000 08660 0057

− −
− − 7 00999

05000 00577 00577 00067
05000 08660 005

.
. . . .
. . .

− −
− 77 00999

05000 08660 08660 14999
05000 00577 0

−
− −
−

.
. . . .
. . .8660 00999

05000 08660 08660 14999
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

.
. . . . ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The application of weighted least squares to obtain solutions for c in
equation [7.10] requires the covariance matrix (V) of sampling errors of (g.
Kirkpatrick et al. (1990) presented several methods for estimating V,
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examining three different experimental designs. However, in animal
breeding, most estimates of

(
G are from field data and may not fit strictly to

the designs they described, but estimates of sampling variances from
restricted maximum likelihood (REML) analysis could be used. For the
example

(
G for the beef cattle data, V has been estimated using the formula

given by Kirkpatrick et al. (1990) for a half-sib design, assuming that 60
sires were each mated to 20 dams. The mean cross-product for the resid-
ual effect ( $ )We was estimated as $ .,W Pe ij ij ij= − 025

(
G and that among sires

( $ )Wa as $ ( / ),W n Pa ij ij ij= − +1 4
(
G , where Pij is the phenotypic variance and n is

the number of dams. Sampling variance for (g was then calculated as:
V = ( / )16 2n [cov( $ , $ ) cov( $ , $ )], , , ,W W W Wa ij a kl e ij e kl+ , where cov( $ , $ )W Wij kl =
( $ $W Wik jl + $Wil

$ )Wjk /df, with df = number of degrees of freedom plus 2. In
estimating cov( $ , $ ), ,W Wa ij a kl and cov( $ , $ ), ,W We ij e kl , df = (s − 1) + 2 and
s(n − 1) + 2, respectively. The estimated V therefore is:

$

. . . . . . . .

V =

34500 22564 21846 22564 14803 14347 21846 14347 13909
22564 29596 24309 29596 29035 25302 24309 2

.
. . . . . . . 5302 21801

21846 24309 38897 24309 22491 31816 388
. .

. . . . . . 97 31816 40515
22564 29596 24309 29596 29035 2530

. . .
. . . . . .2 24309 25302 21801

14803 29035 22491 29035 57114 4
. . .

. . . . . 4100 22491 44100 34175
14347 25302 31816 25302 441

. . . .
. . . . 00 58188 31816 58188 63543

21846 24309 38897 2430
. . . . .

. . . .9 22491 31816 38897 31816 40515
14347 25302 31816 2

. . . . .
. . . 5302 44100 58188 31816 58188 63543

13909 21801 405
. . . . . .

. . 15 21801 34175 63543 40515 63543 118350. . . . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

However, the symmetry of
(
G resulted in redundancies in the vector (g

such that V is singular. The vector (g can be redefined to be of the order s
by 1, which contains only the elements in the lower half of

(
G, where

s = t(t + 1)/2. Therefore delete from (g the elements
(
G ij for which i < j.

Thus, for the example
(
G, the vector (g becomes:

(g = [ . . . . . . ]1323 1270 1366 1728 2008 2880

Then delete from V those columns and rows corresponding to elements
(
Gij

with i < j. This involves deleting rows and columns 4, 7 and 8 from the
matrix V given above. The V of reduced order (s by s) is:

$

. . . . . .

. .

V =

34500 22564 21846 14803 14347 13909
22564 29596 24309 29035 25302 21801
21846 24309 38897 22491 3

. . . .
. . . . 1816 40515

14803 29035 22491 57114 44100 34175
143

. .
. . . . . .

47 25302 31816 44100 58188 63543
13909 21801 4051

. . . . . .

. . .5 34175 63543 118350. . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
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Similarly, the rows corresponding to those elements of (g for which
(
G ij

has i < j are deleted from Xs. In the example Xs, rows 4, 7 and 8 are deleted.
Thus Xs becomes:

X s =

− −
− −

05000 08660 08660 14999
05000 00577 08660 0
. . . .
. . . .
. . . .
. . .

0999
05000 08660 08660 14999
05000 00577 0057

− −
− − 7 00067

05000 08660 00577 00999
05000 08660 0866

.
. . . .
. . .

− −
0 14999.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Also for each element of $c for which C ij has i < j, add the correspond-
ing column of Xs to the column corresponding to C ji and then delete the
former column. For the beef cattle example, the vector of coefficients,

′ =c [ ]C C C C00 10 01 11 . Therefore, the third column of Xs corresponding to
$C01 is added to the second column and the third column is deleted. The
matrix Xs then becomes:

X s =

−
−

05000 17320 14999
05000 09237 00999
05000 00

. . .

. . .

. . 000 14999
05000 01154 00067
05000 08083 00999
0

−
−

−

.
. . .
. . .
.5000 17320 14999. .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Finally, delete from c the elements for which C has elements i < j.
The vector $c now has k(k + 1)/2 elements. For the example data,

′ =c [ ]C C C00 10 11 . The vector c can now be calculated by a weighted
least-square procedure as:

c = ′ ′− − −( )X V X X V gs s s
) ) (1 1 1

For the example data, c calculated using the above equation is:

′ =c [ . . . ]3418512 450421 245405

The reduced coefficient matrix C is then constructed from the calculated c.
Then a row and column of zeros are inserted in positions corresponding
to those polynomials not included in to obtain C. For the example data, C is
now:

3418512 450421 00
450421 245405 00

00 00 00

. . .

. . .

. . .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Kirkpatrick et al. (1990) presented the following chi-square statistic to test
the goodness of fit of the reduced covariance function to

(
G:

c 2 1( ) ( ) $ ( )m p s s− = − ′ −−( (g X V g Xc c
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where m = t(t + 1)/2 is the number of degrees of freedom in
(
G and

p = (k(k + 1))/2 is the number of parameters being fitted. A significant
result indicates that the model is inconsistent with the data and a higher
order of fit may be needed. For the beef cattle example, the value of c2 was
0.2231 with m = 6 and p = 3. This value of c2 was not significant with
three degrees of freedom and thus the reduced covariance function was
not significantly different from

(
G.

Another method of fitting a reduced-order CF, proposed by
Mantysaari (1999), involved eigenvalue decomposition of the coefficient
matrix. The largest k eigenvalues of $C in [7.9], for instance, are kept in a
diagonal matrix (Da) and the matrix F is replaced by the k corresponding
eigenfunctions. Thus $G in [7.8] can be approximated as:

$ [ ] [ ]G v v v D v v v TD T≈ ′ ′ = ′F F1 2 1 2L Lk a k a

where the vi are the eigenvectors of $C corresponding to eigenvalues in Da.
Similarly, if CF has been fitted to the environmental covariance

matrix, a similar reduction can be carried out, as follows:

R C I= +F Fp s 2e [7.11]
= ′ ′ + = ′ +F F[ ] [ ]v v v D v v v I QD Q I1 2 1 2

2 2L Lk p k ps se e

where Dp contains the k largest eigenvalues of Cp. However, Mantysaari
(1999) indicated that, with several biological traits, [7.11] could easily
lead to a non-positive definite Cp and the decomposition might not be pos-
sible. He used an expectation maximization (EM) algorithm to fit the CF to
the environmental covariance matrix. However, if Cp has been estimated
directly using REML (Meyer and Hill, 1997), the EM algorithm would not
be necessary and the covariance matrix for pe can be approximated as
QDpQ′. In addition to reducing the number of equations to k per animal in
the MME with this method, the system of equations is very sparse since Da

or Dp are diagonal.

7.4 Equivalence of the Random Regression Model to the
Covariance Function

Meyer and Hill (1997) indicated that the RR model is equivalent to a
covariance function model. The equivalence of the RR model fitting either
a parametric curve or Legendre polynomials to the CF model is presented
below. Similarly to the model in Section 7.2, the RR model with a para-
metric curve can be represented as:

y F z t z t z t ejt jt m m
m

f

m jm
m

k

m jm j= + + + +
=

−

=

−

∑ ∑( ) ( ) ( )b a l
0

1

0

1

t
m

k

=

−

∑
0

1
[7.12]

where yjt is the test day record of cow j made on day t; bm are fixed regres-
sion coefficients; a ljm jmand are the additive genetic and permanent
environmental random regressions for cow j; Fjt represents the remaining
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fixed effects in the model; zm(t) is the mth parameter of a parametric func-
tion of days in milk and ejt is the random error term. For example, in the
model of Jamrozik et al. (1997), z was a function of days in milk with five
parameters: z = (1 c c2 d d2), where c = t/305 and d = ln(1/c), with ln being
the natural logarithm. Then the covariance between breeding values ui

and ul on an animal recorded at DIM ti and tl is:

cov( , ) ( , ) ( ) ( )cov(u u f t t z t z ti l i l m i
r

k

r l
m

k
= =

=

−

=

−

∑∑
0

1

0

1
a am r, ) [7.13]

However, instead of a parametric curve, assume that orthogonal poly-
nomials such as Legendre polynomials were fitted in an RR model, as
described in Section 7.2. Let ai and al represent TD records on days ti and
tl of animal j standardized to the interval −1 to 1, as outlined in Appendix
G. Furthermore, assume that the mth Legendre polynomial of ai be fm la( ),
for m k= −0 1, ,K . The covariance between breeding values ui and ul on an
animal recorded at DIM ai and al could then be represented as:

cov( , ) ( , ) ( ) ( )cov(u u f a a a ai l i l m i
r

k

r l
m

k
= =

=

−

=

−

∑∑ f f
0

1

0

1
a am r, ) [7.14]

The right-hand sides of equations [7.13] and [7.14] are clearly equiva-
lent to the right-hand side of equation [7.6], with cov(am, ar) equal to Cij,
the ij element of the coefficient matrix of the covariance function. This
equivalence of the RR model with the covariance function is useful when
analysing data observed at many ages or time periods, as only k regression
coefficients and their (k(k + 1))/2 covariances need to be estimated for
each source of variation in an RR univariate model.
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8 Use of Genetic Markers in
Prediction of Breeding Values

Genetic markers are useful in identifying portions of the chromosomes that
are associated with particular quantitative traits. The incorporation of
information on marker loci that are linked to quantitative trait loci (QTL),
together with phenotypic information in a genetic evaluation procedure,
would increase the accuracy of evaluations and therefore of selection. The
use of breeding values with marker information incorporated in the selection
of animals in a breeding programme is termed marker-assisted selection
(MAS). The gains from MAS depend on the amount of genetic variation
explained by the marker information and are larger for traits with low
heritabilities, and therefore estimated breeding values (BV) from pheno-
type are of low accuracy (Goddard and Hayes, 2002). Similarly, MAS
should result in larger increases in accuracies for traits that are sex-limited,
such as milk yield, or measured only in culled animals, for instance, car-
cass traits. Marker information could be used for the selection or screening
of young males before the progeny test in dairy cattle or performance test-
ing in pigs, resulting in the reduction of the generation interval.

Fernando and Grossman (1989) presented a methodology that incorpo-
rated marker information into the best linear unbiased prediction (BLUP)
procedure for the genetic evaluation of animals. In this chapter, this method
is discussed and illustrated. The use of a reduced animal model and other
approaches to reduce the number of equations is presented. The extension of
the method of Fernando and Grossman (1989) by Goddard (1992) to handle
information on QTL bracketed by two markers is examined.

8.1 Defining a Model with Marker Information

Consider a single polymorphic marker locus (ML), which is closely linked
to a quantitative trait locus (MQTL). Assume individual i inherited

© R.A. Mrode 2005. Linear Models for the Prediction of Animal Breeding Values,
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M i
pand M i

m at the ML from its paternal (p) and its maternal (m) parents.
Also let Qi

p and Qi
m denote alleles at the quantitative trait loci linked to

M i
p and M i

m , as illustrated below:

M Q

M Q

i
p

i
p

i
m

i
m

| |

| |

Let v i
p and v i

m be the genetic additive effects of Qi
p and Qi

m , respectively,
and ui the genetic additive effects of the remaining quantitative trait loci
not linked to the ML. Then the additive genetic value (ai) of individual i is:

a v v ui i
p

i
m

i= + + [8.1]

Given only phenotypic information, the usual BLUP equation for
additive genetic effects (Section 3.1) is:

y x a ei i i i= + +b [8.2]

Replacing ai above by 8.1 gives:

y x v v u ei i i
p

i
m

i i= + + + +b [8.3]

From Section 2.1, the covariance matrix for ui, A, is the usual relation-
ship matrix (Henderson, 1976), but the covariance for vi, Gv, depends on both
the relationship matrix and marker information. Thus, given A and Gv, the
BLUP of vi and ui can be obtained using the usual mixed model equations
(MME). The calculation of A and its inverse has been covered in Chapter 3.
The calculation of Gv and its inverse is covered in the next section.

8.2 Calculating the Covariance Matrix (Gv) for MQTL Effects

The matrix Gv vs 2 represents the covariance between the additive effects of
the MQTL alleles. For simplicity, consider only maternal MQTL. Assume
two arbitrary individuals b and b′ inherit MQTL alleles Qb

m and Qb
m

′
with additive effects v b

m and v b
m

′ from dams d and d¢, respectively. The
covariance between the additive effects v b

m and v b
m

′ for the maternal MQTL
in b and b′ is:

cov( , ) cov( , ) ( )v v v v Q Q P Q Qb
m

b
m

b
m

b
m

b
m

b
m

b
m

b
m

′ ′ ′ ′= ≡ ⋅ ≡

= ⋅ ≡ ′var( ) ( )v P Q Qb
m

b
m

b
m

= ′sv v b b
2G ( , ) [8.4]

where var ( )v b
m

v= s 2 is the variance of the MQTL allele, P Q Qb
m

b
m( )≡ ′ is

the probability that Qb
m is identical by descent (IBD) to Qb

m
′ and the
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matrix Gv(b,b′) is the covariance matrix for the MQTL between b and b′.
Given that b is not a direct descendant of b′, Qb

m can only be identical by
descent to Qb

m
′ in two mutually exclusive manners: (i) if Qb

m is IBD to
Qd

p
′ , the paternal MQTL allele of the dam of b′, and b′ has inherited Qd

p
′ ;

or (ii) if Qb
m is IBD to Qd

m
′ , the maternal MQTL allele of the dam of b′, and

b′ has inherited Qd
m

′ .This is akin to calculating A where the relationship,
say, between b and b′ is evaluated through the relationship of b with the
parents of b′.

With marker information available, the conditional probability that b′
inherits Qd

m
′ , given that it has inherited M d

m
′ , is ( )1− r , with r being the

recombination rate between the ML and MQTL. Thus, if b′ inherits M d
m

′ ,
the probability in equation [8.4] can be calculated recursively as:

P Q Q P Q Q r P Q Q rb
m

b
m

b
m

d
p

b
m

d
m( ) ( ) ( ) ( )≡ = ≡ ⋅ + ≡ ⋅ −′ ′ ′ 1 [8.5]

Similarly, given that b′ inherits M d
p

′ , then:

P Q Q P Q Q r P Q Q rb
m

b
m

b
m

d
p

b
m

d
m( ) ( ) ( ) ( )≡ = ≡ ⋅ − + ≡ ⋅′ ′ ′1 [8.6]

If it is not known whether b′ inherits M d
m

′ or M d
p

′ due to lack of marker
information, then Qd

m
′ and Qd

p
′ have equal probability of being transmitted

to b′. Therefore, r is replaced by 0.5 in equations [8.5] and [8.6].
Using the above information, Fernando and Grossman (1989) devel-

oped a tabular method for constructing Gv which is similar to that for
calculating A. The rows and columns of Gv should be such that those for
parents precede those for progeny. It should be noted that there are two
rows for an individual in Gv, one each for the paternal and maternal
MQTL alleles. Let g ij be the ij element of Gv and io

p , io
m be the rows of Gv

corresponding to the additive effects of MQTL alleles ( , )v vo
p

o
m of the oth

individual. Similarly let i s
p , i s

m be the rows for the additive effects of the
MQTL alleles ( , )v vs

p
s
m of its sire (s) additive effects and id

p , id
m be the rows

for the effects of the MQTL alleles ( , )v vd
p

d
m of its dam (d). Then the elements

of the row io
p below the diagonal, using equations [8.4] to [8.6], can be

calculated as:

g g g j ii j o
p

i j o
p

i j o
p

o
p

s
p

s
m, , ,( ) ; , ,= − + = −1 1 1r r for K [8.7]

with ro
p r= if b inherits M s

p or ro
p r= −( )1 if o inherits M s

m . Similarly,
elements of row io

m below the diagonal are:

g g g j ii j o
m

i j o
m

i j o
m

o
m

d
p

d
m, , ,( ) ; , ,= − + = −1 1 1r r for K [8.8]

where ro
m r= if o inherits M d

p or ro
m r= −( )1 if o inherits M d

m . Since Gv is
symmetric, then:

g g g gj i i j j i i jo
p

o
p

o
m

o
m, , , ,= =and

It is obvious from [8.4] that, if o o= ′, that is, the same individual, then
cov( , ) var( )v v vo

m
o
m

o
m

′ = , as P Q Qo
m

o
m( )≡ =′ 1. Therefore the diagonal elements
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of Gv equal unity. If it is not possible to determine which of the two
marker alleles o inherited from its sire or dam, then ro

p in [8.7] and ro
m in

[8.8] are replaced by 0.5.

8.2.1 Numerical application

Example 8.1
Given in the table below are the post-weaning gain data of five calves with
the genotype at the marker locus given. The aim at this stage is to construct
the covariance matrix Gv for the MQTL among the five calves assuming a
recombination rate (r) between ML and MQTL of 0.1.

Marker inheritance

Calf Sex of calf Sire Dam Sire Dam PWG (kg)

1 M – – – – 6.8
2 F – – – – 4.5
3 M 1 2 M p

1 M m
2 8.5

4 F 1 3 M m
1 M p

3 6.0
5 F 4 3 M p

4 M p
3 7.0

For ease of illustration, let rows io
p and io

m for animal o in Gv be coded
as ip and im, respectively. Thus, for example, for animal 1, i p

1 and i m
1 will

be coded as 1p and 1m, respectively, for animal 2, i p
2 and i m

2 will be coded
as 2p and 2m and, for animal 5, i p

5 and i m
5 will be coded as 5p and 5m,

respectively. The Gv for the example, therefore, is:

1p 1m 2p 2m 3p 3m 4p 4m 5p 5m

1p 1.000 0.000 0.000 0.000 0.900 0.000 0.100 0.810 0.171 0.810
1m 0.000 1.000 0.000 0.000 0.100 0.000 0.900 0.090 0.819 0.090
2p 0.000 0.000 1.000 0.000 0.000 0.100 0.000 0.010 0.001 0.010
2m 0.000 0.000 0.000 1.000 0.000 0.900 0.000 0.090 0.009 0.090
3p 0.900 0.100 0.000 0.000 1.000 0.000 0.180 0.900 0.252 0.900
3m 0.000 0.000 0.100 0.900 0.000 1.000 0.000 0.100 0.010 0.100
4p 0.100 0.900 0.000 0.000 0.180 0.000 1.000 0.162 0.916 0.162
4m 0.810 0.090 0.010 0.090 0.900 0.100 0.162 1.000 0.246 0.820
5p 0.171 0.819 0.001 0.009 0.252 0.010 0.916 0.246 1.000 0.228
5m 0.810 0.090 0.010 0.090 0.900 0.100 0.162 0.820 0.228 1.000

The calculation of Gv for the first three animals is illustrated as below.
For the first two animals, the parents are unknown; therefore:

g g g gp p m m p p m m1 1 1 1 2 2 2 2 0, , , ,= = = =
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At the ML, animal 3 inherited M s
p from his father; therefore, for row 3p in

Gv, corresponding to the effects of the paternal alleles of the MTQL for
animal 3, r = 0.1. Hence, from equation [8.7]:

g g gp p p p m p3 1 1 1 1 11 01 01 09 1 01 0 09, , ,( . ) ( . ) ( . ) ( . ) .= − + = + =
g g gp m p m m m3 1 1 1 1 11 01 01 09 0 01 1 01, , ,( . ) ( . ) ( . ) ( . ) .= − + = + =
g g gp p p p m p3 2 1 2 1 21 01 01 09 0 01 0 0, , ,( . ) ( . ) ( . ) ( . )= − + = + =
g g gp m p m m m3 2 1 2 1 21 01 01 09 0 01 0 0, , ,( . ) ( . ) ( . ) ( . )= − + = + =
g p p3 3 10, .=

At the ML, animal 3 inherited M d
m from his mother; therefore, for row 3m

in Gv, corresponding to the effects of the maternal alleles of the MQTL for
animal 3, r = 0.9. Hence, from equation [8.8]:

g g gm p p p m p3 1 2 1 2 11 09 09 01 0 09 0 0, , ,( . ) ( . ) ( . ) ( . )= − + = + =
g g gm m p m m m3 1 2 1 2 11 09 09 01 0 09 0 0, , ,( . ) ( . ) ( . ) ( . )= − + = + =
g g gm p p p m p3 2 2 2 2 21 09 09 01 1 09 0 01, , ,( . ) ( . ) ( . ) ( . ) .= − + = + =
g g gm m p m m m3 2 2 2 2 21 09 09 01 0 09 1 09, , ,( . ) ( . ) ( . ) ( . ) .= − + = + =
g g gm p p p m p3 3 2 3 2 31 09 09 01 0 09 0 0, , ,( . ) ( . ) ( . ) ( . )= − + = + =
g m m3 3 10, .=

8.3 An Alternative Approach for Calculating Gv

An alternative recursive method for the calculation of Gv and its inverse
was presented by Van Arendonk et al. (1994) using matrix notation. Their
method accounts for inbreeding and can be used to calculate a combined
numerator relationship matrix (Aa) and its inverse. The matrix A a =
A Au v+ , where Au is the numerator relationship matrix for animals for
QTL not linked to the marker and Av is the relationship matrix for animals
for MQTL linked to the marker. The inverse of Aa is useful for the direct
prediction of total additive genetic merit, that is, additive genetic merit
with information from markers directly included.

The principles of their methodology are initially illustrated briefly
using the calculation of the relationship matrix (A) among animals in the
absence of marker information. The representation of the rules for build-
ing Ai for animals 1 to i in matrix form is:

A
A A s
s A

i
i i i

i i iia
= ⎡

⎣
⎢

⎤

⎦
⎥

− −

−

1 1

1
[8.9]

where si is the column vector of i − 1 elements containing two non-zero
elements, 1

2, corresponding to the sire or dam (if known) and zeros else-
where. A i−1 is the numerator relationship matrix for animals 1 to (i − 1)
and aii is the diagonal element of A for animal i and is equal to 1 + Fi,
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where Fi is the inbreeding coefficient of the ith animal. Using the data in
Example 8.1, the A matrix, ignoring marker information, is:

A =

1000 0000 0500 0750 0625
0000 1000 0500 0250 03
. . . . .
. . . . . 75

0500 0500 1000 0750 0875
0750 0250 0750 1250 10
. . . . .
. . . . . 00

0625 0375 0875 1000 1375. . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

For animal 5, ′ =s5 0 0 05 05[ . . ]; therefore the column vector above the
diagonal for animal 5 (q5) in A, using [8.9], can be calculated as q A s5 4 5= .
Thus the row vector ′ = ′ =q s A5 5 4 0625 0375 0875 100[ . . . . ] and the diagonal
element for animal 5, a a55 341 05 1375= + =. ( ) . . Note also, that given qi , s i
can be computed as:

s A qi i i= −
−

1
1 [8.10]

This relationship will be used in subsequent sections when it is not possi-
ble to calculate s i directly.

Given A i−
−

1
1 , for animal i − 1, Tier and Solkner (1993) demonstrated the

effect of adding an additional row to A on the elements of A−1 as:

A
A

s A s
s s s

si
i

ii i i i
i i i

i
a− −

−
− −=

⎡

⎣
⎢

⎤

⎦
⎥ + − ′

′ −
− ′

1 1
1

1
10

0 0
( )

1
⎡

⎣
⎢

⎤

⎦
⎥ [8.11]

When both sire (f) and dam (d) of i are known, ′ = + + +−s A si i ff fd dfa a a1
1
4 (

add ) where ajj are the elements of A i−1 for f and d. Since a aii fd= +( )1 1
2 ,

then ( )aii i i− ′ − −s A s1
1 can be written as ( ( ))1 1

4
1− + −a aff dd . The applica-

tion of [8.11] to calculate A −1 for the pedigree in Example 8.1 is straight-
forward. For instance, for the first two animals with parents unknown,
A 2

1− is an identity matrix of order 2. Then A 3
1− can be calculated using

[8.11]. Given that A4
1− has been calculated, the inverse of A for all five ani-

mals can be illustrated as follows.
For animal 5, ( ) ( ( )) ( ( . ))a a a55 5 4 5

1 1
4 33 44

1 1
4

11 1 1 125− ′ = − + = − +− − −s A s =
2.286. Then [8.11] is:

A5
1

2000 0500 0500 1000 0000
0500 1500 1000 0

− =

− −
−

. . . . .

. . . . .

. . . . .

. .

000 0000
0500 1000 2500 1000 0000
1000 0000 1

− − −
− − . . .

. . . . .
000 2000 0000

0000 0000 0000 0000 0000

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+ ( . )

. . . . .

. . . . .

. . .2286

00 00 00 00 00
00 00 00 00 00
00 00 025 025 05
00 00 025 025 05
00 00 05 05 10

. .
. . . . .
. . . . .

−
−

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

− −
−

2000 0500 0500 1000 0000
0500 1500 1000 0000 0
. . . . .
. . . . .
. . . . .
. . .

000
0500 1000 3071 0429 1143
1000 0000 0429

− − − −
− − 2571 1143
0000 0000 1143 1143 228

. .
. . . . .

−
− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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where:
′ =s5 0 0 05 05( . . )

Applying equations [8.9], Van Arendonk et al. (1994) showed that,
when alleles are ordered chronologically, Gv,i can be calculated as:

G
G G s

s G
v i

v i v i i

i v i iig
,

, ,

,
=

′
⎡

⎣
⎢

⎤

⎦
⎥

− −

−

1 1

1
[8.12]

where si is the column vector of i – 1 elements containing non-zero elements
relating allele i to paternal and maternal alleles of parent (if known) and zeros
elsewhere; Gv i, −1 is the covariance matrix for MQTL for alleles 1 to ( )i − 1 and
g ii is the diagonal element of Gv for the i allele, which is equal to one. Using
the same notation for the rows inGv shown in Section 8.2.1, si for animals 3, 4
and 5 are: ′ =s3p [(1 − r) r 0 0], ′ =s3m [0 0 r (1− r) 0], ′ =s4p [r (1− r) 0 0 0 0],
′ =s4m [0 0 0 0 (1 − r) r 0], ′ =s5p [0 0 0 0 0 0 (1 − r) r] and ′ =s5m

[0 0 0 0 (1 − r ) r 0 0 0]. Thus Gv can easily be constructed using [8.12].

8.4 Calculating the Inverse of Gv

Fernando and Grossman (1989) used an approach similar to that for
setting up A −1 in calculating the inverse of Gv .They showed that Gv could
be expressed as:

G Q HQv = ′− −( )1 1

Therefore Gv
−1 can be written as:

G QHQv
− = ′1 [8.13]

where Q I P= − ′( ) and P is a matrix that relates the effect of the MQTL
allele of an individual to the paternal and maternal MQTL alleles of its
parent. Each row of P contains only two non-zero elements if the parent is
known, otherwise only zeros if the parent is unknown. For instance, for
individual i with sire (s) known, row io

p will have ( )1− ro
p in the column

corresponding to i s
p , and ro

p in the column corresponding to column i s
m .

Similarly, if the dam (d) is known, row io
m will contain ( )1− ro

m in the col-
umn corresponding to id

p , and ro
m in the column corresponding to id

m . The
row of P for allele i is equal to s i in equation [8.12]. The matrix P for the
pedigree in Example 8.1 is:

1p 1m 2p 2m 3p 3m 4p 4m 5p 5m

1p 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2p 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3p 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3m 0.0 0.0 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0
4p 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4m 0.0 0.0 0.0 0.0 0.9 0.1 0.0 0.0 0.0 0.0
5p 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.1 0.0 0.0
5m 0.0 0.0 0.0 0.0 0.9 0.1 0.0 0.0 0.0 0.0
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The matrix H is a diagonal matrix for the covariance of residual effects
after adjusting the effect of the MQTL allele of an individual for the effects
of the parent’s paternal and maternal MQTL alleles. For example, the
residual effect ( )eo

p for a paternal MQTL allele of an individual with sire s
known is:

( ) ( )e r ro
p

o
p

o
p

s
p

o
p

s
mv v v= − − +1

and the variance of ( )eo
p is:

var( ) var( ) ( ) var( ) ( ) var(e r ro
p

o
p

o
p

s
p

o
p

s
mv v v= − − ⋅ − ⋅1 2 2 )

− − ⋅2 1( ) cov( , )r ro
p

o
p

s
p

s
mv v

Since var( ) var( ) var( )v v vo
p

s
p

s
m

v= = = s 2 and cov( , ) var( )v v vs
p

s
m

s
p= ⋅ P Qs

p( ≡
Q v F Fs

m
s
p

s v s) var( )= ⋅ = s 2 , the above equation can be written as:

var( ) ( ) ( ) ( )e s r s r s r ro
p

v o
p

v o
p

v o
p

o
p

sF= − − −2 2 2 12 2 2 2

= − − −2 1 12s r r r rv o
p

o
p

o
p

o
p

sF(( ) ( ) )
= − −2 1 12s r rv o

p
o
p

sF( ) ( )
var( )/ ( ) ( )e s r ro

p
v o

p
o
p

o
p

sh F2 2 1 1= = − − [8.14]

where ( ) ( )1 1− = −r ro
p

o
p r r for ro

p r= or (1 − r), Fs is the inbreeding coeffi-
cient at the MQTL of the sire and ho

p is the diagonal element of H for the
paternal MQTL of individual o. Therefore, if the sire is not inbred,
h r ro

p = −2 1( ) with marker information or ho
p = 05. with no marker infor-

mation and ho
p = 1 if the sire is unknown. Similarly, for the maternal

MQTL of o:

var( )/ ( ) ( )e s r ro
m

v o
m

o
m

o
m

dh F2 2 1 1= = − − [8.15]

where ( ) ( )1 1− = −r ro
m

o
m r r for ro

m r= or (1 – r), Fd is the inbreeding coeffi-
cient at the MQTL of the dam and ho

m is the diagonal element of D for
the paternal MQTL of individual o. Therefore, if the dam is not inbred,
h r ro

m = −2 1( ) with marker information or ho
m = 05. with no marker informa-

tion and ho
m

v= s 2 if the dam is unknown.
Equation [8.13] may be written as:

Gv j j j
j

n
q q h−

=
= ∑1

1

where n is the number of individuals in the pedigree, qj is the jth column of
Q and hj is the jth diagonal element of H. Since Q P= − ′( )1 , the jth element
of qj (that is, the diagonal element) is unity and qj has at most only two other
non-zero elements. If the sire of o is known, j io

p= , element i s
p

o
p= − −( )1 r

and element i s
m

o
p= − r . Similarly, if the dam is known, then, for j io

m= , ele-
ment id

p
o
m= − −( )1 r and element id

m
o
m= − r . Therefore the contribution cor-

responding to the paternal and maternal MQTL alleles of an individual to
Gv

−1 can easily be calculated from parent and marker information.
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Fernando and Grossman (1989) gave the following rules for obtaining
Gv

−1. First, calculate the diagonals of H using equations [8.14] and [8.15]
and its inverse. Secondly, set Gv

−1 to zero and for each offspring o, with
sire s and dam d, add the following to the indicated elements of Gv

−1.
If the sire is known, add:

( )1 2− ro
p

i s
p

s
ph i i

o
p to diagonal element

− −( )1 ro
p

i s
p

o
p

o
p

s
ph i i i i

o
p to elements and

( )1− r ro
p

o
p

i s
p

s
m

s
m

s
ph i i i i

o
p to elements and

( )ro
p

i s
m

s
mh i i

o
p

2 to diagonal element

− ro
p

i s
m

o
p

o
p

s
mh i i i i

o
p to elements and

If the dam is known, add:

( )1 2− ro
m

i d
p

d
ph i i

o
m to diagonal element

( )1− r ro
m

o
m

i d
p

d
m

d
m

d
ph i i i i

o
m to elements and

− −( )1 ro
m

i d
p

o
m

o
m

d
ph i i i i

o
m to elements and

( )ro
m

i d
m

d
mh i i

o
m

2 to diagonal element

− ro
m

i d
m

o
m

o
m

d
mh i i i i

o
m to elements and

And always add:

h i i h i ii o
p

o
p

i o
m

o
m

o
p

o
mto element and to element

Applying these rules, the calculation of the inverse of Gv
−1 for the

pedigree in Example 8.1 is illustrated. For this pedigree, the matrix H and
its inverse are:

H = diag( )1 1 1 1 018 018 018 018 01508 018. . . . . . and

H − =1 diag(1 1 1 1 5.556 5.556 5.556 5.556 6.630 5.556)

Note that in calculating the diagonal element for the paternal MQTL of
animal 5 ( ),h p p5 5 , an inbreeding coefficient of 0.162 (covariance between
the maternal and paternal MQTL alleles of the sire (animal 4)) has been
accounted for. Set Gv

−1 with elements represented as g ii jj, to zero and the
contribution from the first three animals can be calculated as follows.

For animals 1 and 2, parents are unknown; the diagonal elements are
equal to 1 for the MQTL alleles of these animals. Therefore add 1 to
g g g gp p m m p p m m1 1 1 1 2 2 2 2, , , ,, , and , using the same coding as for the rows of
Gv in Section 8.2. For the paternal MQTL allele of animal 3, ro

p = 01. and h p p3 3,
equals 5.556. Add (1 − 0.1)2h3p,3p = 4.50 to g1p,1p, (1 − 0.1)0.1(h3p,3p) = 0.5 to
g1p,1m, −(1 − 0.1)h3p,3p = −5.00 to g1p,3p, (0.1)2h3p,3p = 0.056 to g1m,1m,
(−0.1)h3p,3p = 0.556 to g1m,3p and h3p,3p to g3p,3p. For the maternal allele of

Genetic Markers in Prediction of Breeding Values 171

185
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:24:02 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



animal 3, ro
m = 09. and h3m,3m = 5.556. Add (1 − 0.9)2h3m,3m = 0.056 to g2p,2p,

(1 − 0.9)0.9(h3m,3m) = 0.5 to g2p,2m, −(1 − 0.9)h3m,3m = −0.556 to g2p,3m,
(0.9)2h3m,3m = 4.50 to g2m,2m, (−0.9)h3m,3m = −0.500 to g2m,3m and h3m,3m to
g3m,3m. Applying the rules to all animals in the pedigree gives Gv

−1 as:

1p 1m 2p 2m 3p 3m 4p 4m 5p 5m

1p 5.556 1.000 0.000 0.000 −5.000 0.000 −0.556 0.000 0.000 0.000
1m 1.000 5.556 0.000 0.000 −0.556 0.000 −5.000 0.000 0.000 0.000
2p 0.000 0.000 1.056 0.500 0.000 −0.556 0.000 0.000 0.000 0.000
2m 0.000 0.000 0.500 5.500 0.000 −5.000 0.000 0.000 0.000 0.000
3p −5.000 −0.556 0.000 0.000 14.556 1.000 0.000 −5.000 0.000 −5.000
3m 0.000 0.000 −0.556 −5.000 1.000 5.667 0.000 −0.556 0.000 −0.556
4p −0.556 −5.000 0.000 0.000 0.000 0.000 10.925 0.597 −5.967 0.000
4m 0.000 0.000 0.000 0.000 −5.000 −0.556 0.597 5.622 −0.663 0.000
5p 0.000 0.000 0.000 0.000 0.000 0.000 −5.967 −0.663 6.630 0.000
5m 0.000 0.000 0.000 0.000 −5.000 −0.556 0.000 0.000 0.000 5.556

Similarly, the inverse of Gv i,
−1 can be obtained using [8.11] (Van

Arendonk et al., 1994) as:

G
G

s G s
s s

v i
v i

ii i v i i
i ig,

,
,( )− −

−
− −=

⎡

⎣
⎢

⎤

⎦
⎥ + − ′

′ −1 1
1

1
10

0 0

s
s

i

i− ′
⎡

⎣
⎢

⎤

⎦
⎥1

[8.16]

The application of [8.16] for the calculation of Gv
−1 is briefly illustrated. It

has been shown earlier that Gv
−1 for the MQTL alleles of the first two ani-

mals is an identity matrix of order 4. The matrix Gv
−1 with the paternal

MQTL allele of animal 3 added can be computed as:

G
G

v p
v m

,
, ( . )

. . .

3
1 2

1
10

0 0
1 082

081 009 0 0 09

0
−

−
−=

⎡

⎣
⎢

⎤

⎦
⎥ + −

−

. . .

. .

09 001 0 0 01

0 0 0 0 0

0 0 0 0 0

09 01 0 0 1

−

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

−

−

5500 0500 00 00 5000

0500 1056 00 00 0556

00 0

. . . . .

. . . . .

. .0 00 00 00

00 00 00 00 00

0500 0556 00 00 5556

. . .

. . . . .

. . . . .− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The computation of Gv and Gv
−1 in Sections 8.2 and 8.4 has assumed that

paternal and maternal origin of marker alleles can be determined and
marker information is complete. When these assumptions do not hold,
approximate methods are described in Appendix H.
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8.5 Prediction of Breeding Values with Marker Information

The model [8.3] for breeding value prediction with marker information
can be written in matrix notation as:

y X Zu Wv e= + + +b [8.17]

where y is the vector of observation, b is the vector of fixed effects, u is the
random vector for additive genetic effects due to loci not linked to ML,
v is the random vector with allelic effects at the MQTL and e is random
residual effects. The matrices X, Z and W are incidence matrices.
Var I( ) , var( ) , var( )u v eu u v v e= = =A Gs s s2 2 2 and cov(u, v) = cov( , )u e =
cov(v, e) = 0.

The MME for the above linear model are:

′ ′ ′
′ ′ + ′
′ ′ ′ +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

−

−

X X X Z X W
Z X Z Z A Z W
W X W Z W W G

u

v

1
1

1

a

a2 ⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

$

$

$

b

u
X y
Z y
W yv

[8.18]

where:
a s s a s s1

2 2
2

2 2= =e u e v/ /and

8.5.1 An illustration

Example 8.2
Using the data for Example 8.1, the breeding value of animals for QTL not
linked to ML (simply referred to subsequently as breeding values), addi-
tive MQTL effects are predicted for the beef calves and sex effects are esti-
mated. It is assumed that s s su v e

2 2 203 005 06= = =. , . .and . Therefore a1 =
0.6/0.3 = 2 and a2 = 0.6/0.05 = 12. The parameters are expressed as a pro-
portion of the phenotypic variance. Note that the total genetic variance
s s sa u v

2 2 22 03 2 005 040= + = + =( ) . ( . ) . . Thus 40% of the phenotypic variance
is due to additive genetic variance, of which 25% can be explained by the
MQTL.

The matrix X is formed as discussed in Example 3.1, Z is an identity
matrix and the matrix W is:

W =

1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The matrices Au
−1 and Gv

−1 have been calculated for the Example data.
The remaining matrices in the MME are calculated through matrix
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multiplication and addition. The MME are too large to be shown, but solv-
ing the equations by direct inversion gives the following results:

Effects Solutions

Sexa

1 7.357
2 5.529

Animal Breeding values
1 0.092
2 −0.091
3 0.341
4 0.329
5 0.515

MQTL alleles of animals Additive effects
1p 0.064
1m 0.011
2p −0.065
2m −0.011
3p 0.083
3m −0.004
4p 0.028
4m 0.076
5p 0.043
5m 0.086

a1 = male, 2 = female.

The additive genetic effects of the MQTL accounted for about 45% of the total
genetic merit of animals 1 and 2 but only about 20% for animals 3 and 5.

In Germany, with Holstein dairy cattle, the method in Example 8.2
has been used for incorporating QTL information into routine estimation
of breeding values (Szyda et al., 2003). In their study, 13 markers were
used for routine genotyping of animals, and regions representing QTL for
milk, protein, fat yields and somatic cell counts have been identified on
several chromosomes. The QTL information has been incorporated into
BLUP, analysing daughter yield deviation (DYD) as the dependent vari-
able. As a percentage of the polygenic variance, the variances of the
MQTL in their study varied from 3 to 5% for milk, fat and protein yields
in the first lactation.

8.6 Reduced Animal Model with Marker Information

The main advantage of a reduced animal model (RAM), as indicated in
Section 3.4, is the reduction in the number of equations in the MME to be
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solved. Fitting an animal model with marker information incorporated,
using the method of Fernando and Grossman (1989), results in the total
number of equations for animals being k m( )2 1+ , where k is the number of
animals and m the number of MQTL. For a large k, m or both, solving such
a system may not always be feasible. Cantet and Smith (1991) presented a
RAM, based on the methodology of Fernando and Grossman(1989), which
would reduce the total number of equations for animals from k m( )2 1+ to
q m( )2 1+ , where q is the number of parents. The application of RAM
involves partitioning the data vector, y, into records of animals that are
parents (yp) and those without progeny (yn; non-parents). With a conform-
able partitioning of X, Z, W, u, v and e, then [8.17] can be written as:

y
y

X
X

Z
Z

u
u

Wp

n

p

n

p

n

p

n

p⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ +b

0
0

0
0 W

v
v

e
en

p

n

p

n

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ [8.19]

The vectors un and vn are expressed as linear functions of up and vp to
obtain the RAM. The equations relating progeny MQTL effects to MQTL
of parents were given by Fernando and Grossman (1989) as:

v v vo
p

o
p

s
p

o
p

s
m

o
p= − + +( )1 r r e

v v vo
m

o
m

d
p

o
p

d
m

o
m= − + +( )1 r r e

Therefore, for non-parents (vn), the vector of MQTL effects can be written
as a function of that of parents (vp) as:

v Pvn p= + e [8.20]

where the vector e has elements i and i + 1 equal to eo
p and eo

m , respec-
tively. As shown in Section 8.4, var(e) is diagonal and is equal to Hsv

2.
The matrix P of order 2(k − q) by 2q is as defined in Section 8.4 and the ith
row contains at most two non-zero elements in the columns correspond-
ing to the effects of the paternal and maternal MQTL of the parent if
known. The value of these non-zero elements has been defined in Section
8.4. For instance, assume that only the first three calves in the pedigree (for
Example 8.1) were being considered in an analysis. Then calf 3 is a
non-parent and the matrix W is:

W
W

W
= ⎛

⎝
⎜

⎞
⎠
⎟ =

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

p

n

0
0

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

And, for r = 0.1, P is:

P = ⎛
⎝
⎜

⎞
⎠
⎟

09 01 0 0
0 0 01 09

. .
. .

The derivation of the equations for RAM for estimating up and back-
solving for un has been presented in Chapter 3, Section 3.4. From [3.16],
an expression for up in matrix notation can be written as:

u Z up p= +1 f

where f is the vector of Mendelian sampling.

Genetic Markers in Prediction of Breeding Values 175

189
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:24:07 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



176 Chapter 8

Substituting the above equation and [8.20] into [8.19] gives the
following RAM equations:

y
y

X
X

Z
Z Z Z

u Wp

n

p

n

p

n n

p p⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ +b

f

0

1

0
W P W

v e
en n

p p

n

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟

e
[8.21]

or:

y
y

X
X

Z
Z

u
W
T

vp

n

p

n

p
p

p
p

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟b

1
( ) ( ) +

+
⎛
⎝
⎜

⎞
⎠
⎟

e
e W

p

n* e
[8.22]

where e*, Z1 are as defined in [3.21] and [3.22], respectively, and
T = WnP. Note that, in the above equation, Z Zn 1 in [8.21] = Z1 in [8.22]
since Zn is an identity matrix.

The variance for the vector of residuals can be expressed as:

var
e
e W

R
R

I
I D F

p

n

p

n* +
⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟ =

+ +
⎛
⎝
⎜ − −e a a

0 0
0 1

1
2

10
⎞
⎠
⎟ s e

2

with a s s1
1 2 2− = a e/ and a s s2

1 2 2− = v e/ , D as defined in [3.22] and F W HW= ′n n .
The matrix F is a diagonal matrix with the ith diagonal element equal to
var( ) var( )e eo

p
o
m+ , which is equal to the sum of the diagonal elements of row i

and i + 1 of H. Thus the diagonal elements of F are equal to:
2 1 2r r f fs d( )( )− − − if both sire and dam of the non-parent are known
2 1 1 1r r f s( )( )− − + if only the sire is known
2 1 1 1r r fd( )( )− − + if only the dam is known
2 if both parents are unknown

The MME for [8.22] with Rp factored out are:
′ + ′ ′ + ′ ′ + ′
′ +

− − −X X X R X X Z X R Z X W X R T
Z X

p p n s n p p n s p p n s

p p

1 1
1

1

′ ′ + + ′ +
′ + ′

− − − −Z R X Z Z Z R Z A Z W Z R T
W X

n s n p p s up p p s

p

1
1

1
1

1
1 1

1a

T R X W Z T R Z W W T R T Gs p p s p p s vp
− − − −′ + ′ ′ + ′ +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

1 1
1

1 1
2a ⎥

$

$

$

b

u
v

X y X R y
Z y Z R yp

p

p p n s n

p p s n

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
′ + ′
′ + ′
′

−

−

1

1
1

W y T R yp p s n+ ′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥−1

[8.23]

where R D Fs
− − − −= + +1

1
1

2
1 11( )a a and the matrices Aup

−1 and Gvp
−1 are formed

only for individuals who are parents.

8.6.1 Numerical example

Example 8.3
Using the data in Example 8.1 and the genetic parameters, a reduced ani-
mal model is used to estimate the sex effects of calves and predict breed-
ing values of animals and the paternal and maternal additive effects of
MQTL alleles of animals.

The only non-parent animal in the data set is calf 5 with both parents
known. Note that the sire of calf 5 is inbred. Therefore the diagonal element
of D for calf 5 accounting for inbreeding equals 0.5(1 − 0.125) = 0.4375. Also
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Genetic Markers in Prediction of Breeding Values 177

the diagonal element of F for calf 5 = 2r(1 − r)(2 – Fs – Fd) = 0.2(0.1)�

(0.9)(2 – 0.162 – 0) = 0.3308. Therefore R s
−1 = (1 + 0.4375(0.5) + 0.3308

(0.0833))−1 = 0.8024.
The design matrix Wp is as in Example 8.1 but formed only for

parents, Z Ip = 4 and Z1 = [0 0 0.5 0.5]. The matrix P relates the MQTL
alleles of calf 5 to those of its parents and is:

P = ⎛
⎝
⎜

⎞
⎠
⎟

0 0 0 0 0 0 09 01
0 0 0 0 09 01 0 0

. .
. .

Since Wn for calf 5 equals [1 1], then WnP = T = [0 0 0 0 0.9 0.1 0.9 0.1].
The matrices in the MME can be calculated through matrix multiplication from
the design matrices outlined. For instance, the matrix ′ + ′ −W W T R Tp p s

1 is:

′ + ′ =−W W T R Tp p s
1

1000 1000 0000 0000 0000 0000 0000 0. . . . . . . .
. . . . . . . .
.

000
1000 1000 0000 0000 0000 0000 0000 0000
0000 0. . . . . . .
. . .

000 1000 1000 0000 0000 0000 0000
0000 0000 1000 1. . . . .
. . . . .

000 0000 0000 0000 0000
0000 0000 0000 0000 1650 1. . .
. . . . . . .

072 0650 0072
0000 0000 0000 0000 1072 1008 0072 0.
. . . . . . . .
.

008
0000 0000 0000 0000 0650 0072 1650 1072
0000 0. . . . . . .000 0000 0000 0072 0008 1072 1008

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The matrices Aup
−1 and Gvp

−1 in the MME have been calculated, account-
ing for inbreeding as described in Section 8.4. The number of equations
in the MME for the reduced animal model are 14 compared to 17 for the
animal model in Example 8.1. The MME are too large to be shown but
solving the equations gives the following solutions:

Effects Solutions

Sexa

1 7.357
2 5.529

Animal Breeding values
1 0.092
2 −0.091
3 0.341
4 0.329

MQTL alleles of animals Additive effects
1p 0.064
1m 0.011
2p −0.065
2m −0.011
3p 0.083
3m −0.004
4p 0.028
4m 0.076

a1 = male, 2 = female.
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As expected, solutions for sex of calf effect and parents were the same as
those obtained with the animal model in Example 8.1.

8.6.2 Back-solving for solutions of non-parents

After obtaining solutions for fixed effects, parental breeding values and
parental MQTL effects, the breeding values and additive MQTL effects for
non-parents can be calculated. From [8.21] the equations for $f and $e are:

′ ′ + ′ + ′ ′ + + ′ + ′−Z X Z Z u Z Z D Z W Pv Z Wn n n p n n n n p n n
$ $ ( )$ $b f1

1
1a $e = ′Z yn n

′ ′ + ′ + ′ + ′ + ′ + −W X W Z u W Z W W Pv W W Hn n n p n n n n p n n
$ $ $ $ ( )$b f1

1
2a e = ′W yn n

Assuming that non-parents have one record each (Zn = I) and moving terms
which are not directly associated with f and e to the right-hand side gives:

I D W
W W W H

+
′ ′ +

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

−

−

1
1

1
2

a

a

n

n n n

$

$

f

e

=
′

⎛
⎝
⎜

⎞
⎠
⎟ − − −

I
W

y X Z u Tv
n

n n p p( $ $ $ )b 1 [8.24]

On absorbing the equations for $f, the equation for $e becomes:

( [ ( ) ] ) $′ − + +− − −W I I D W Hn n
1

1
1 1

2a a e

= ′ − + − − −−W I I D X Z u Tvn n n p py( ( )( $ $ $ )1
1 1a b [8.25]

Let B I I D= − + − −( )1
1

1a in [8.5], then B is a diagonal matrix with element bii

equal to:

b d dii ii ii= − + = +−1 1 1
1

1 1( ( / )) /( )a a a

where dii is the diagonal element of D. The matrix ′W BWn n in [8.25] is then
block diagonal, since Wn has rows with two consecutive elements equal to
1 and the remaining elements are equal to zero. Each block is of order 2 by
2 with all elements equal to bii. Adding H −1

2a to this 2 by 2 block diagonal
matrix gives the coefficient matrix on the left-hand side of [8.25]. Thus
solutions for $e can be obtained by solving ( )s p− systems of order 2 where
s is total number of animals. For the ith animal, [8.25] can be written as:

b
r r f

b

b b
r r f

ii
s

ii

ii ii
d

+
− −

+
− −

⎛

⎝

⎜
⎜
⎜⎜

a

a

2

2

2 1 1

2 1 1

( )( )

( )( )

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟

$

$

e

e
i
p

i
m ii cib y

1
1

[8.26]

where yci = is the element i of y X Z u Tvn p p− − −b 1 $ .
After solving for $e, the solution $f can be obtained by solving the first

equation in [8.24] as:

$ ( ) $ $ ( ) $ $f e f= + − = = + − −− − − −I D y W I D1
1

1 1
1

1a ac n i ci i
p

i
my e e

= + − −( /( )) $ $d dii ii ci i
p

i
ma1 y e e [8.27]
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Solutions for additive genetic effects not linked to MQTL for non-parents
are then obtained as:

$ $u Z un p n= +1 f [8.28]

and additive MQTL effects as:

$ $ $v Pvn p= + e [8.29]

In Example 8.2, parents of the only non-parent (calf 5) are known;
therefore:

b55 = 2/(2 + 0.4375) = 0.8205

For calf 5, b55yc5 in [8.26] is:

08205 05 1 15 2 4 3 4 4. ( $ . ( ) ( ) $ ( $ ) ( ) $y u u r v r v r vp m− − + − − − − −b 3 3p mr v− ( $ ))
= − − + − −08205 70 5529 05 0341 0329 09 0028 01. ( . . . ( . . ) . ( . ) . (0076. )

− − −09 0083 01 0004. ( . ) . ( . ))
= =08205 110289 08442. ( . ) .

Then equation [8.26] becomes:

08205
12

015084
08205

08205 08205
12

016

.
.

.

. .
.

+

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

$

$

.

.

e

e

5

5

08442

08442

p

m

The solutions for e5
p and e5

m are 0.0104 and 0.0124, respectively, from the
above equation. Therefore the solutions for the paternal and maternal
MQTL effects of calf 5 from [8.29] are:

$ ( ) $ ( $ ) $ . ( . ) . ( . )v r v r vp p m
p

5 4 4 51 09 0028 01 0076= − + + = + +e 00104 0043. .=
$ ( ) $ ( $ ) $ . ( . ) . ( . )v r v r vm p m

m
5 3 3 51 09 0083 01 0004= − + + = + −e + =00124 0086. .

Using [8.27], the solution for $f5 is:
$ [ . /( . )]( $ $ )f e e5 5 504375 04375 2= + − −y c

p p

= − − =0179 1029 00104 00124 0180. ( . . . ) .

Therefore, the breeding value of calf 5 from [8.28] is:

$ . ( $ $ ) $ . ( . . ) . .u u u5 4 5 505 05 0341 0329 0180 0515= + + = + + =f

which is the same as that obtained from the animal model.

8.7 Directly Predicting the Additive Genetic Merit at the MQTL

In Section 8.6, the application of a RAM in order to reduce the number of
equations for the prediction of breeding values was presented. However,
with RAM, three equations are still required for each animal that is a par-
ent. Another approach to reduce the number of equations in the MME is to
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directly predict the combined additive genetic effects of the paternal and
maternal alleles at the MQTL of an individual. The number of equations
per animal would therefore be two, one for the additive genetic effects not
linked to the MQTL and the other for MQTL. This implies predicting the
additive genetic effects at the MQTL at the animal level; therefore a co-
variance matrix (Av) for the MQTL at the animal level is needed. The
covariance matrix Av can be obtained from Gv as A BG Bv v= ′1

2 ; where
B I= n ⊗ [1 1], where n is the number of animals and ⊗ denotes the Kronecker
product. For Example 8.1, the matrix B = W in Section 8.4 and Av is:

Av =

1000 0000 0500 0950 0945
0000 1000 0500 0050 0
. . . . .
. . . . .055

0500 0500 1000 0590 0631
0950 0050 0590 1162 1
. . . . .
. . . . .072

0945 0055 0631 1072 1228. . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Equation [8.11] can be used to obtain the inverse of Av. However, the
vector si, containing the contributions from ancestors, is needed and this
can be computed using [8.10]. The vector si for the ith animal needed to
calculate Av

−1 is shown in Table 8.1.
The inverse of Av is:

Av
− =

− − −
−

1

4966 0286 0148 2723 1382
0286 1519 1068 0
. . . . .
. . . . .
. . . . .
. .

013 0249
0148 1068 2245 0298 0732
2723 0013

− − − −
− −0298 5978 2971

1382 0249 0732 2971 4836
. . .

. . . . .
−

− − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The model for the prediction now becomes:

y X Zu Wq e= + + +b [8.30]

where all terms are as defined in [8.18] except that W is now identical to Z
and relates additive genetic effects at the MQTL to animals. Both matrices
Z and W are identity matrices and are of the order of animals. The vector q
is the vector of additive genetic effects at the MQTL and is equal to the
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Elements in si relating to animal

Animal 1 2 3 4

2 0.0000
3 0.5000 0.5000
4 0.8600 −0.0400 0.1800
5 0.2857 −0.0514 0.1514 0.6143

Table 8.1. Vector (si) with contributions at the MQTL from ancestors
(animals 1 to 4) to animals 2 to 5, using the pedigree in Example 8.1.
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Genetic Markers in Prediction of Breeding Values 181

sum of the additive genetic effects of the paternal and maternal alleles for
the animal. The covariance matrix of q A A= =2 2 2

v v v qs s , since s sq v
2 22= .

The MME for the above model are:
′ ′ ′
′ ′ + ′
′ ′ ′ +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

−

−

X X X Z X W
Z X Z Z A Z W
W X W Z W W A

u

v

1
1

1
2

a

a ⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

$

$

$

b

u
q

X y
Z y
W y

[8.31]

with:
a s s1

2 2= e u/ and a s s2
2 2= e q/

8.7.1 An illustration

Example 8.4
Using the same data set as in Example 8.2 and the same genetic parame-
ters, the prediction of additive genetic effects breeding values at the QTL
not linked to the MQTL, and combined additive genetic effect of the
MQTL at the animal level, is illustrated.

From the parameters, a1 = 0.6/0.3 = 2 and a2 = 0.6/0.10 = 6. The design
matrices X and Z are as defined in Example 8.2 and W is now equal to Z.
The MME will be too large to show but the matrix ′ +− −W R W A1 1

2v a is:

′ + =

− − −

− −W R W A1 1
2

30796 1716 0888 16338 8292
1716 1

v a

. . . . .

. 0114 6408 0078 1494
0888 6408 14470 1788 439

. . . .
. . . . .

−
− − − − 2
16338 0078 1788 36868 17826

8292 1494 4392
− − −

− − −
. . . . .
. . . 17826 30016. .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Solving the MME gave the following solutions:

Effects Solutions

Sexa

1 7.356
2 5.529

Animal Additive genetic effects not linked to MQTL
1 0.091
2 −0.091
3 0.341
4 0.329
5 0.515

Animal Combined additive genetic effects at the MQTL
1 0.076
2 −0.076
3 0.079
4 0.104
5 0.130

a1 = male, 2 = female.
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The solutions for the additive effect at the MQTL are the same as the
sum of estimated effects in Examples 8.2 and 8.3. Although the number of
equations in the MME is 12 compared with 14 for the RAM, the difference
between the two models will generally be data dependent. However,
application of this model may be limited to populations of small size
as the tabular method of calculating Av and its inverse may not be
computationally feasible in large populations.

8.8 Predicting Total Additive Genetic Merit

Van Arendonk et al. (1994) showed that total additive genetic merit (a)
for animals that includes marker information could be predicted directly.
This implies that only a single equation is needed for an animal in the
MME for the prediction of breeding values with marker information
included. Let equation [8.17] be written as:

y X Za e= + +b [8.32]

where a = u + Kv, with u and v as defined in [8.17]. The matrix K, which
relates allelic effects to animals, is identical to W in equation [8.17] when
all animals have observations. The covariance matrix of a (Va) is:

V u Kva = +var( )
= + ′var( ) var( )u K v K
= + ′A KG Ku u v vs s2 2

= +A Au u v vs s2 22
V A Aa u u v q= +s s2 2

The combined numerator relationship matrix among animals with
marker information included (Aa) is:

A A Aa u u a v q a= +s s s s2 2 2 2/ / [8.33]

with:

s s sa u q
2 2 2= +

The MME for [8.32] are:

′ ′ ′
′ ′ + ′

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ =

′
′

⎡

⎣−

X X X Z X W
Z X Z Z A Z W a

X y
Z ya

1
1a

$

$

b
⎢

⎤

⎦
⎥ [8.34]

where:

a s s= e a
2 2/

The use of equation [8.34] would require the inverse of Aa to be calculated.
Initially Aa is computed using [8.33], A a

−1 can be calculated using [8.11],
with the vector si containing the contributions from ancestors computed
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using [8.10]. The calculation of both matrices is illustrated in the following
example.

8.8.1 Numerical application

Example 8.5
Using the same data set as in Example 8.2 and the same genetic parameters,
the total additive genetic effects of animals, which included marker informa-
tion, are directly predicted. From the genetic parameters in Example 8.2,
s s sa u q

2 2 2 03 01 04= + = + =. . . and s e
2 06= . ; therefore, a s s= =e a

2 2/ 06 04 15. / . .= .
The Z matrix in [8.32] is now an identity matrix considering animals with
records.

The matrix Aa below was calculated as the sum of Au(0.3/0.4) and
Av(0.1/0.4). The matrices Au and Av have been calculated in Examples 8.2
and 8.4.

A a =

1000 0000 0500 0800 0705
0000 1000 0500 0200 0
. . . . .
. . . . .295

0500 0500 1000 0710 0814
0800 0200 0710 1228 1
. . . . .
. . . . .018

0705 0295 0814 1018 1338. . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The vector si for the ith animal needed to calculateA a
−1 is shown in Table 8.2.

The matrix A a
−1 calculated using [8.11] is:

A a
− =

− − −

1

22641 04854 04101 12080 01314
04854 15007
. . . . .
. . −

− − − −
10218 00030 00327

04101 10218 27536 03673 09
. . .

. . . . . 544
12080 00030 03673 29811 14088
01314 00327

− − −
− −

. . . . .

. . 09544 14088 24619. . .−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The MME [8.32] for the Example data are as follows:

2000 0000 1000 0000 1000 0000 0000
0000 3000 0000
. . . . . . .
. . . 1000 0000 1000 1000

1000 0000 4396 0728 0615 18
. . . .

. . . . . .− − 12 0197
0000 1000 0728 3251 1533 0005 0049
1000 0

−
−

.
. . . . . . .
. . . . . . .
. . .

000 0615 1533 5130 0551 1432
0000 1000 1812 0

− − − −
− . . . .

. . . . .
005 0551 5472 2113

0000 1000 0197 0049 1432 2
− −

− − − . .

$

$

$

$

$

$113 4693

1

2

1

2

3

4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡ b

b

a

a

a

a⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

153
175

68
45
85
60
70

.

.

.

.

.

.

.

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Genetic Markers in Prediction of Breeding Values 183

197
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:24:18 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



Solving the MME gave these results:

Effects Solutions

Sexa

1 7.356
2 5.529

Animal Total additive genetic merit
including marker information

3 0.167
4 −0.167
5 0.419
6 0.432
7 0.645

a1 = male, 2 = female.

The application of [8.32] is valuable as only one equation is fitted per animal
but its application to a large data set may be limited because of the tabular
method of calculating the relationship matrix needed and its inverse.

8.9 Analysis of Data with QTL Bracketed by Two Markers

This section deals with the extension of the model of Fernando and
Grossman (1989) by Goddard (1992) to handle situations in which MQTL is
bracketed between two markers. The use of marker information when MQTL
is bracketed between two markers should enhance the accuracy of estimated
breeding values compared with information with a single marker.

8.9.1 Basic model

Consider a chromosome with a series of marked loci with at most one QTL
located between each pair of markers:

184 Chapter 8

Elements in si relating to animal

Animal 1 2 3 4

2 0.0000
3 0.5000 0.5000
4 0.5900 −0.0100 0.4200
5 0.0534 −0.0133 0.3877 0.5722

Table 8.2. Vector (si) with contributions from ancestors
(animals 1 to 4) to animals 2 to 5, using the pedigree in Example 8.1.
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M Q Mj j j +1

Each animal inherits two alleles at the Qj locus, one from its sire and the
other from its dam. A marker haplotype consisting of the marker alleles at
Mj and Mj+1 would be associated with each of the MQTL alleles. Let the jth
chromosome segment that animal i inherited from its sire be of the marker
haplotype (kl) and the value of the MQTL allele be vij(kl) or simply vij(p).
Similarly, let the value of the MQTL allele from its dam be vij(m). Summed
over all chromosome segments, the breeding value of animal i(ai) is:

a u v vi i ij p
j

ij m
j

= + +∑ ∑( ) ( )

Similarly to [8.3], the model for the phenotypic record of the animal is:

y x u v v ei i i ij p
j

ij m
j

= + + + +∑ ∑b ( ) ( )

or in matrix notation the model is:

y X Zu W v e= + + +∑b j j
j

The terms are as defined in [8.17]. The vector vj contains the effects of the
paternal and maternal MQTL alleles at each locus. The summation is over
chromosome segments bounded by markers. The variance of u and vj is as
defined in [8.18], such that:

var(vj) = Gvj vjJ 2

Assuming j = 2, the BLUP equations for the above model are:

′ ′ ′ ′
′ ′ ′ ′
′ ′ ′ ′ +

−

X X X Z X W X W
Z X Z Z + A Z W Z W
W X W Z W W G

1 2
1

1 1 2

1 1 1 1

a

v

v

1
1

2 1 2

2 2 2 1 2 2 2
1

3

−

−

′
′ ′ ′ ′ +

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

a

a

W W
W X W Z W W W W G

$b
$

$

$

u
v
v

X y
Z y
W y
W y

1

2

1

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

′
′
′
′

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

[8.35]

where:

a s s a s s a s s1
2 2

2
2

1
2

3
2

2
2= = =e u e v e v/ , / /and

8.9.2 Calculating the covariance matrix, G

Consider a single MQTL bounded by two marker loci with marker
distances as follows:

M Q M

pr qr p q

r

1 2

1( )+ =
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With the assumption of no crossover, the recombination rates are (Haldane,
1919) between:

M M a e r
1 2

205 1and = = − −. ( )
M Q b e pr

1
205 1and = = − −. ( )

Q M c e qrand 2
205 1= = − −. ( )

Similarly to the situation with a single marker, the variance of v
depends on the relationship among the v terms. The MQTL alleles in the
progeny can be expressed in terms of parental MQTL. Thus, given, for
instance, that the genotype of the sire is:

1 1

2 2

11v

v

s

s22

The sire will produce the following four types of gametes on the basis of
marker haplotypes:

1 1 1 2 2 2 2 211 12 21 22v v v vo o o o

Assuming no double recombination between markers, the frequency,
means and approximate means for the four gametes (Goddard, 1992) are:

Haplotype Frequency Mean Approximate mean

1 1 1
2
(1 − a) [(1 − b)(1 − c)/1 − a]vs11 + [bc/1 − a]vs22 vs11

1 2 1
2
a [(1 − b)c/a]vs11 + [b(1− c)/a]vs22 qvs11 + pvs22

2 1 1
2
a [b(1 − c)/a]vs11 + [(1 − b)c/a]vs22 pvs11 + qvs22

2 2 1
2
(1 − a) [bc/1 − a]vs11 + [(1 − b)(1 − c)/1 − a]vs22 vs22

Given, for instance, that r = 0.2, p = 0.8 and q = 0.2, then a, b and c are
0.1649, 0.1370 and 0.0385, respectively. The means for the haplotypes are
0.99vs11 and 0.01vs11 for (1 1), 0.2vs11 and 0.8vs11 for (1 2), 0.8vs11 and 0.2vs11
for (2 1) and 0.01(vs11) and 0.99(vs11) for (2 2). The approximate means are
very similar to these estimates. The maximum errors associated with the
above approximate means are when p = q = 0.5 for haplotypes (1 1) and (2 2)
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(Goddard, 1992). Using the approximate means, the value of the MQTL in
each gamete can be written in terms of the parental MQTL as:

v

v

v

v

q p

p q

v
o

o

o

o

11

12

21

22

1 0

0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

s

sv
11

22

11

12

21

22

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

e

e

e

e

[8.36]

where eij is the deviation of each gamete from the mean of the haplotype.
Since vo11 is identical to vs11 and vo22 to vs22 with the approximate means,
then e e11 22 0= = .

Similarly to [8.20], equation [8.36] may be expressed as:

v Pv= + e

where P is as defined in [8.20] and has at most two non-zero elements
which sum to unity. Thus:

v I P= − −( ) 1e

Therefore:

G v I P I P= = − − ′− −var( ) ( ) var( )( )1 1e

and:

G I P H I P− −= − ′ −1 1( ) ( ) [8.37]

where Hsv
2 = var( )e and H is a diagonal matrix. Since e e11 22 0= = ,

var(e11) = var(e22) = 0. The main interest, therefore, is in calculating
var(e12) and var(e21). The calculation of either var(e12) or var(e21) is similar
to that for var(e) in Section 8.4. For instance, for the oth progeny:

eo o s sv q v p v12 12 11 22= − −( ) ( )

var( ) var( ) var( ) var( ) coveo o s sv q v p v qp12 12
2

11
2

22 2= − − − ( , )v vs s11 22

= − − + − −s s s sv v v v sp p p p F2 2 2 2 2 21 2 1( ) ( )

= − − −2 1 12sv sp p p pF(( ) ( ) )

= − − = −2 1 1 2 12 2s sv s v sp p F pq F( ) ( ) ( )

var( )/ ( )e so v spq F12
2 2 1= = −H

Therefore, if the sire is not inbred, the diagonal element of H for progeny
o(hoo) with the allele vo12 equals 2pq. If the sire is unknown, hoo = 1. Similarly,
for a progeny o with allele vo21, hoo = 2qp if the sire is known, otherwise 1 if
the sire is unknown.

The matrix G can be calculated using rules similar to those defined in
Section 8.3. The relationship of the MQTL paternal allele of a progeny o
with MQTL alleles of individuals 1 to (o − 1) can be calculated using [8.7],
with ro

p p= when o inherits marker haplotype vs12 or ro
p p= −( )1 when o

inherits marker haplotype vs21. Similarly, for the maternal MQTL allele,
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[8.8] can be used, with ro
m p= when o inherits marker haplotype vm12 or

ro
m p= −( )1 when o inherits marker haplotype vm21.

Using [8.37], Goddard (1992) derived the following rules for calcu-
lating Gv

−1:

1. Replace vo11 with vs11 in all equations and then delete the row and
column for vo11 in G −1. Similarly replace vo22 with vs22. Set G −1 to zero.
2. For progeny allele vo12, add:

q/2p to the element corresponding to (vs11, vs11)
p/2q to the element corresponding to (vs22, vs22)
1/2pq to the element corresponding to (vo12, vo12)
–1/2p to the element corresponding to (vs11, vo12) and (vo12, vs11)
–1/2q to the element corresponding to (vs22, vo12) and (vo12, vs22)
–1/2 to the element corresponding to (vs11, vs22) and (vs22, vs11)

3. For progeny allele vo21, replace p with q and vo12 with vo21 in the rules
above.
4. For an allele vs11 without known parents, add 1 to the element corre-
sponding to (vs11, vs11).

Goddard (1992) indicated that the use of the approximate means to cal-
culate P implies that vs11 and vo11 are forced to be identical even if double
crossover occurs. Therefore it might be desirable to use a correlation (r)
slightly less than unity between vs11 and vo11. This is achieved by using:

v r v r vo s s11
2

11
2

22 111 4 4= − + +( / ) / e

Then the row and column for vo11 are retained in Gv
−1 and, in the above

rules, vo12 is replaced by vo11 and p by r 2 4/ .

8.9.3 An illustration

Example 8.5
Consider that the first four calves in Example 8.3 have the following genotype
at two linked loci.

Genotype at the two linked markers

Animal Sire Dam Marker  1 Marker 2

1 – – 11 22
2 – – 33 44
3 1 3 12 44
4 4 3 21 14

Assuming no double crossing over, the same pedigree structure, genetic
parameters and letting p and q be equal to 0.8 and 0.2, respectively, predict
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the effects of the sex of the calf, additive genetic effects (breeding values)
not linked to the MQTL for animals and additive genetic effects for the
MQTL alleles of animals.

The alleles at the MQTL can be defined from the genotypes at the two
linked marker loci. Thus the paternal and maternal MQTL alleles for ani-
mal 1 will be vs11 and vs22, respectively. Correspondingly, those for animal
4 will be vo21 and vo14, respectively. As in Example 8.3, a1 = 0.6/0.3 =2 and
a2 = 0.6/0.05 = 12. With the assumption of no double crossing over, for
calf 3, vo44 = vm44 (calf 2); therefore, the row and column for vo44 are
deleted from Gv and MME.

The design matrix Z is an identity matrix of order four and W is:

W W W=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

′ =

1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1

1

and

1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 2 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The covariance matrix Gv is:

Gv =

1000 0000 0000 0000 0200 0800 0040
0000 1000 0
. . . . . . .
. . .000 0000 0800 0200 0160

0000 0000 1000 0000 0000 0
. . . .

. . . . . .000 0000
0000 0000 0000 1000 0000 0000 0800
0200 0

.
. . . . . . .
. .800 0000 0000 1000 0320 0200

0800 0200 0000 0000 0
. . . . .

. . . . .320 1000 0064
0040 0160 0000 0800 0200 0064 1000

. .
. . . . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The calculation of Gv with elements g(i,j) for the first few animals is as
follows. For the first two animals, both parents are unknown; therefore
the diagonal element of G for either the paternal or maternal allele is one
for these animals. Calf 3 inherited marker haplotype vs12 from its sire;
therefore ro

p p= in [8.7]. Assuming the same coding for Gv as in Example
8.1, then

g p g pg qp p p p p p p p m m p p( , ) ( , ) ( , )( ) ( )3 3 1 1 1 1 1 1 1 1 1 11 1= − + = + p q( ) .0 02= =
g p g pg qp p m m p p m m m m m m( , ) ( , ) ( , )( ) ( )3 3 1 1 1 1 1 1 1 1 1 11 0= − + = + p p( ) .1 08= =
g p g pg qp p p p p p p p m m p p( , ) ( , ) ( , )( ) ( )3 3 2 2 1 1 2 2 1 1 2 21 0= − + = + p( )0 0=
g p g pg qp p m m p p m m m m m m( , ) ( , ) ( , )( ) ( )3 3 2 2 1 1 2 2 1 1 2 21 0= − + = + p( )0 0=

The marker haplotype inherited by calf 4 from its sire is vs21; therefore
ro

p q= in [8.7]. Thus:
g q g qg pp p p p p p p p m m p p( , ) ( , ) ( , )( ) ( )4 4 1 1 1 1 1 1 1 1 1 11 1= − + = + q p( ) .0 08= =
g q g qg pp p m m p p m m m m m m( , ) ( , ) ( , )( ) ( )4 4 1 1 1 1 1 1 1 1 1 11 0= − + = + q q( ) .1 02= =
g q g qg pp p p p p p p p m m p p( , ) ( , ) ( , )( ) ( )4 4 2 2 1 1 2 2 1 1 2 21 0= − + = + q( )0 0=
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g q g qg pp p m m p p m m m m m m( , ) ( , ) ( , )( ) ( )4 4 2 2 1 1 2 2 1 1 2 21 0= − + = + q( )0 0=
g q g qg p qp p m m p p m m m m m m( , ) ( , ) ( , )( ) ( )4 4 3 3 1 1 3 3 1 1 3 31= − + = +q p pq( ) .= =2 032

The inverse of Gv is:

Gv
− =

− −

1

3125 1000 0000 0000 0625 2500 0000
1000 31
. . . . . . .
. . 25 0000 0000 2500 0625 0000

0000 0000 1000 0000 0
. . . . .

. . . .
− −

. . .
. . . . . . .

000 0000 0000
0000 0000 0000 3000 0500 0000 2500−

− − −
− −

0625 2500 0000 0500 3250 0000 0625
2500 0625
. . . . . . .
. . 0000 0000 0000 3125 0000

0000 0000 0000 2500 06
. . . . .

. . . . .− − 25 0000 3125. .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The matrix G −1 was computed using the rules outlined earlier. Thus, for
the first two animals (first four alleles), add 1 to the diagonal elements
since parents of both calves are unknown. For the paternal allele of calf 3,
add 12/ pq to the diagonal element (3p3p,3p3p) of G q p−1 2, / to element
(1p1p,1p1p), p q/2 to element (1m1m,1m1m), −12/ p to elements (1p1p,3p3p)
and (3p3p,1p1p), −12/ q to elements (1m1m,3p3p) and (3p3p,1m1m) and
0.5 to elements (1p1p,1m1m) and (1m1m,1p1p).

The matrix A −1 for the example data has been given in Example 8.3;
therefore the MME can easily be set up from the design matrices and
inverse of the covariance matrices given. Solving the MME by direct
inversion gave the following results:

Effects Solutions

Sex of calf a

1 7.475
2 5.091

Breeding values for animals
1 0.034
2 −0.034
3 0.246
4 0.280

Additive effects for animals at the MQTL
1p −0.008
1m 0.005
2p −0.047
2m 0.049
3p 0.024
4p 0.010
4m 0.059

a1 = male, 2 = female.
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A similar model to that in Example 8.5 has been used by Boichard et al.
(2002) for incorporating MQTL information into genetic evaluation for milk
production traits in young bulls.

8.10 Reduced Animal Model

The use of the animal model (equation [8.35]) implies that, given t QTL
loci, there are one u effect and two tv effects to be fitted per animal. The
use of the reduced animal model could be very advantageous in reducing
the number of equations as only parents are considered. The fitting of a
RAM with MQTL information from multiple markers is the same as
described in Section 8.6; therefore only a brief outline is presented. With
RAM, MQTL additive genetic effects for non-parents are expressed as a
function of MQTL effects of parents. For this model, the equation for a
non-parent is:

y X Z u Pv e= + + +∑b 1 p p j
j

( ) *

where Z1 is as defined in Section 8.6, P is as defined in [8.20] and:

e W e* = + +∑f enj
j

j

Then:

var( )e I D W HW* = + + ′∑a a1 2n
j

n

with terms defined as in [8.22] and the matrix S j n nW HW′ for the jth locus
is diagonal with the following elements:

2 1 2p p f fs d( )( )− − − if both sire and dam of the non-parent are known
2 1 1 1p p fs( )( )− − + when only the sire is known
2 1 1 1p p fd( )( )− − + when only the dam is known
2 if both the sire and dam of the non-parents are unknown

The equations for parents are the same as in Section 8.6 and the MME similar
to those in equation [8.23].
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9 Non-additive Animal Models

The models considered in the previous chapters have dealt with only
additive genetic effects. Henderson (1985) provided a statistical frame-
work for modelling additive and non-additive genetic effects when there
is no inbreeding. This chapter covers some of such models. The ability to
separate non-additive genetic effects implies removal of some of the con-
founding that would otherwise bias the results from the analysis. More-
over, the availability of estimates of non-additive genetic effects for
individuals could be used in mate selection, which would maximize the
use of both additive and non-additive genetic variance. In this chapter,
the prediction of dominance and epistatic effects using mixed model
methodology is discussed. In practice, the application of non-additive
models in genetic evaluation has been limited due to lack of genetic parame-
ters and partly due to the fact that these effects tend to be highly confounded
with others, such as common maternal environment.

9.1 Dominance Relationship Matrix

Dominance genetic effects result from the action of pairs of alleles at a locus
on a trait. If two animals have the same set of parents or grandparents, it is
possible that they possess the pair of alleles in common. The dominance
relationship between two such animals represents the probability that they
have the same pair of alleles in common. Thus, for a group of animals, the
dominance genetic relationship matrix (D) among them can be set up. The
dominance relationship between an individual x with parents s and d and
an individual y with parents f and m in a non-inbred population can be
calculated (Cockerham, 1954) as:

d u u u uxy sf dm sm df= +025. ( ) [9.1]
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where uij represents the additive genetic relationship between i and j. For
instance, for two full-sibs with parents unrelated to each other:

d = + =05 1 1 0 0 025. [( )( ) ( )( )] .

with the assumption that there is no common environmental variance.
Thus D can be generated from the additive genetic relationship. How-

ever, the prediction of dominance effects requires the inverse of D. This
could be obtained by calculating D by [9.1] and inverting it; this is not
computationally feasible with large data sets. Hoeschele and VanRaden
(1991) developed a methodology for obtaining a rapid inversion of D and
this is presented in Section 9.3. Initially, the principles involved in using
D−1 from [9.1] for the prediction of dominance effects are discussed.

9.2 Animal Model with Dominance Effect

The model with dominance included is:

y Xb Za Wd e= + + + [9.2]

where y = vector of observation, b = vector of fixed effects, a = vector for
random animal additive genetic effects, d = vector of random dominance
effects, and e = random residual error.

It is assumed that:

var( ) , var( ) var( )a A d D e= = =s s sa d e
2 2 2and

var( )y ZAZ WDW I= ′ + ′ + s e
2

The mixed model equations (MME) to be solved for the best linear unbiased
prediction (BLUP) of a and d and best linear unbiased estimator (BLUE)
of b are:

′ ′ ′
′ ′ + ′
′ ′ ′ +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

X X X Z X W
Z X Z Z A Z W

W X W Z W W D 1

1
1

2

a

a

$b
a
d

X y
Z y
W y

$
$

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[9.3]

with a s s1
2 2= e a/ and a s s2

2 2= e d/ . However, we are interested in the total
genetic merit (g) of the animal, which is g a d= + . The MME could be modified
such that the total genetic merit is solved for directly. Since g a d= + , then:

var( )g G A D= = +s sa d
2 2

The MME become:

′ ′
′ ′ +

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′
′

⎡

⎣
⎢

⎤

⎦
⎥

X X X Z
Z X Z Z G

b
g

X y
Z ys e

2

$

$
[9.4]
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The individual components of g can be obtained as:

$ $a AG g= −s a
2 1 and

$ $d DG g= −sd
2 1

9.2.1 Solving for animal and dominance genetic effects separately

Example 9.1
Suppose the data below were the weaning weight for some piglets in a herd.

Pig Sire Dam Sexa Weaning weight (kg)

5 1 2 1 17.0
6 3 4 1 20.0
7 6 5 1 18.0
8 0 5 1 13.5
9 3 8 2 20.0

10 3 8 2 15.0
11 6 8 2 15.0
12 6 8 2 19.5

a1= female, 2 = male (throughout chapter)

The aim is to estimate sex effects and predict solutions for animal and
dominance genetic effects, assuming that s e

2 120= , s a
2 90= , sd

2 80= . This
has been illustrated below, solving for animal and dominance effects
separately [9.3]. From the above parameters, a1 1333= . and a2 15= . .

SETTING UP THE MME

The matrix X relates records to sex effects. Its transpose, considering only
animals with records, is:

′ = ⎡

⎣
⎢

⎤

⎦
⎥X

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

The matrices Z and W are both identity matrices since each animal has
one record. The transpose of the vector of observations, ′ =y [17 20 18 1.5
20 15 25 19.5].

The other matrices in the MME, apart from A −1 and D−1, can be
obtained through matrix multiplication from the matrices already calcu-
lated. The inverse of the additive relationship matrix is set up, using rules
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outlined in Section 2.3.1. Using equation [9.1], the dominance relationship
matrix is:

D =

1000 0000 0000 0000 0000 0000 0000 0000 0000 00. . . . . . . . . . 00 0000 0000
0000 1000 0000 0000 0000 0000 0000 00

. .
. . . . . . . . 00 0000 0000 0000 0000

0000 0000 1000 0000 0000 00
. . . .

. . . . . . 00 0000 0000 0000 0000 0000 0000
0000 0000 0000 10

. . . . . .
. . . . 00 0000 0000 0000 0000 0000 0000 0000 0000

0000 00
. . . . . . . .

. . 00 0000 0000 1000 0000 0000 0000 0000 0000 0000 00. . . . . . . . . . 00
0000 0000 0000 0000 0000 1000 0000 0000 0000 00. . . . . . . . . . 00 0000 0000
0000 0000 0000 0000 0000 0000 1000 00

. .
. . . . . . . . 00 0063 0063 0125 0125

0000 0000 0000 0000 0000 00
. . . .

. . . . . . 00 0000 1000 0000 0000 0000 0000
0000 0000 0000 00

. . . . . .
. . . . 00 0000 0000 0063 0000 1000 0250 0125 0125

0000 00
. . . . . . . .

. . 00 0000 0000 0000 0000 0063 0000 0250 1000 0125 01. . . . . . . . . . 25
0000 0000 0000 0000 0000 0000 0125 0000 0125 01. . . . . . . . . . 25 1000 0250
0000 0000 0000 0000 0000 0000 0125 00

. .
. . . . . . . . 00 0125 0125 0250 1000. . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

and its inverse is:

D− =1

1000 0000 0000 0000 0000 0000 0000 0000 0000 0. . . . . . . . . . . .
. . . . . . .

000 0000 0000
0000 1000 0000 0000 0000 0000 0000 0. . . . .
. . . . .

000 0000 0000 0000 0000
0000 0000 1000 0000 0000 0. . . . . . .
. . .

000 0000 0000 0000 0000 0000 0000
0000 0000 0000 1. . . . . . . . .
.

000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0. . . . . . . . . .000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0.
. . . . . . . . .

000
0000 0000 0000 0000 0000 1000 0000 0000 0000 0. . .
. . . . . . .

000 0000 0000
0000 0000 0000 0000 0000 0000 1028 0. . . . .
. . . . .

000 0032 0032 0096 0096
0000 0000 0000 0000 0

− − − −
000 0000 0000 1000 0000 0000 0000 0000

0000 0000 0
. . . . . . .

. . .000 0000 0000 0000 0032 0000 1084 0249 0080 00. . . . . . . . .− − − − 80
0000 0000 0000 0000 0000 0000 0032 0000 0249 1. . . . . . . . .− − . . .
. . . . . . .

084 0080 0080
0000 0000 0000 0000 0000 0000 00

− −
− 96 0000 0080 0080 1092 0241

0000 0000 0000 0000
. . . . .

. . . .
− − −

0000 0000 0096 0000 0080 0080 0241 1092. . . . . . . .− − − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The matrices A −1a1 and D−1a2 are added to Z Z′ and W W′ in the MME.
The MME are of the order 26 by 26 and are too large to be presented. How-
ever, the solutions to the MME by direct inversion of the coefficient
matrix are:

Effects Solutions

Sex
1 16.980
2 20.030

Animal BVa DVa

1 −0.160 0.000
2 −0.160 0.000
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(Continued )

Effects Solutions

3 0.059 0.000
4 0.819 0.000
5 −0.320 0.136
6 1.259 0.705
7 0.555 0.237
8 −0.998 −0.993
9 −0.350 0.000

10 −1.350 −1.333
11 1.061 1.428
12 −0.039 −0.038

aBV, DV = solutions for random animal and dominance
effects, respectively.

The results indicate that males were heavier than females by about
3.05 kg at weaning. The breeding value for animal i, $ai , from the MME
can be calculated using [3.8] except that yield deviation is corrected not
only for fixed effects but also for dominance effect. Thus the solution for
animal 6 can be calculated as:

$ (( $ $ )/ ) ( $ $ ) ( $ $ )a n a a n y b d n a a

n
6 1 3 4 2 6 1 6 3 12 82 2= + + − − + −

+ 3 11 8 3 7 52 2( $ $ ) ( $ $ )a a n a a− + −
= + + − − + −n n n1 2 30059 0819 2 20 16980 0705 2 0039( . . )/ ( . . ) ( ( . ) ( . ))− −0998

+ − − + − −n n3 32 1061 0998 2 0555 0320( ( . ) ( . )) ( ( . ) ( . ))
= 1259.

where n wt n wt n wt1 1 2 3 12 1 05= = =a a/ , / , . / , with wt equal to the sum of the
numerator of n1, n2 and 3(n3).

The solution for dominance effect of animal i from the MME is:

$ $ ( $ $ ) (d c d y b a n ci ij j
j

i k i ii= −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+∑a2 a2 )

where cij is the inverse element of D between animal i and j, and n is the
number of records. For instance, the dominance effect of animal 6 is:

$ ( ( . . ))/( . ) .d6 0 20 16980 1259 1 15 0705= + − − + =

The dominance effect for an individual represents interactions of pairs of
genes from both parents and Mendelian sampling; it therefore gives an
indication of how well the genes from two parents combine. This could be
used in the selection of mates.
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9.2.2 Solving for total genetic merit directly

Example 9.2
Using the same data and genetic parameters as in Example 9.1, solving
directly for total genetic merit ( $ $ )a d+ applying equation [9.4] is illustrated.

SETTING UP THE MME

The design matrices X and Z are exactly the same as in equation [9.3]. How-
ever, in [9.4], G A D= +s sa d

2 2. The matrix D has been given earlier and A can
be calculated as outlined in Section 2.1. Then G −1 2s e is added to Z Z′ to
obtain the mixed model equations [9.4]. Solving the mixed model equations
by direct inversion of the coefficient matrix gives the following solutions:

Effects Solutions

Sex
1 16.980
2 20.030

Animal + dominance
1 −0.160
2 −0.160
3 0.059
4 0.819
5 −0.184
6 1.963
7 0.792
8 −1.991
9 −0.349

10 −2.683
11 2.489
12 −0.078

The vector of solutions for additive genetic effects can then be calculated
as $ $a AG g= −s a

2 1 and as $ $d DG g= −sd
2 1 dominance effects, as mentioned ear-

lier. It should be noted that the sum of $ai and di for animal i in Example 9.1
equals the solution for animal i above, indicating that the two sets of results
are equivalent. The advantage of using [9.4] is the reduction in the number of
equations to be solved.

9.3 Method for Rapid Inversion of the Dominance Matrix

Hoeschele and VanRaden (1991) developed a method for computing
directly the inverse of the dominance relationship matrix for populations
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that are not inbred, by including sire and dam or sire and maternal grand-
sire subclass effects in the model. However, only the inclusion of sire and
dam subclasses is considered in this text. Dominance effects result from
interaction of pairs of genes and are not inherited through individuals.
Since animals receive half of their genes from the sire and half from the
dam, the dominance effect of an individual could be expressed as:

d fS D= +, e [9.5]

where f represents the average dominance effect of many hypothetical
full-sibs produced by sire (S) and dam (D) and e is the Mendelian sampling
deviation of the individual from the S by D subclass effect. Variance of S
by D subclass effects, s f

2, is equal to the covariance among full-sibs due to
dominance, that is, s sf d

2 2025= . ; therefore var( ) .e s= 075 2
d . On the basis of

[9.5] Hoeschele and VanRaden developed simple recurrence formulae for
dominance effects using pairs of animals (sire and dam) and interaction
between their parents.

For a particular sire and dam subclass (fSD), the combination effect
results from the interactions between the sire and the parents of D, inter-
actions of the dam with the parents of S and interactions of the parents of
S with the parents of D. Thus:

f f f f f

f f
SD S SD S DD SS D DS D

SS SD SS D

= + + +
− +
05

025
. ( )

. (
, , , ,

, , D DS SD DS DDf f e+ + +, , ) [9.6]

where SS and DS denote sire, and dam of sire, respectively, and SD and DD
corresponding parents for the dam. Equation [9.6] can also be obtained by
regressing fSD on its parent subclass effects as:

f eSD par= ′ +b f

where fpar is a vector of eight parent subclasses in [9.6] and b is a vector of
corresponding partial regression coefficients with:

′ =b f fcov( , )/var( )fSD par par [9.7]

and:

var( ) var( )e f par= − ′s 2 b f b [9.8]

The covariance between subclasses [9.7], for instance, between fSD and fPM is:

cov( , ) ( )f f a a a aSD PM SP DM SM DP f= + s 2 [9.9]

with aij being the additive relationship between i and j. Thus:

cov( , , ) ( )

( . (

, , , ,f f f a a a aSD SS DD S SS D DD S DD D SS f= +

=

s 2

05 0. )) ( ( )) .5 0 0 025 2+ = s f

and:

cov( , ) ( ) ( ( . )) (, , , ,f f a a a aSD S SD SS D SD S SD D S f= + = +s 2 1 05 0( )) .0 05 2= s f
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If the nine subclasses in equation [9.6] are identified by 1, 2, 3, 4, 5, 6, 7, 8
and 9 (that is, fSD = 1, fS,SD = 2, etc.), the covariances between fSD and its
parent subclasses (cov( , )/ )fSD par ff s 2 using [9.9] are:

2 3 4 5 6 7 8 9
[9.10]1[0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25]

and the relationship matrix among parent subclasses (var(f par f)/ )s 2 (sub-
classes 2 to 9) using [9.9] is:

10 00 025 025 05 00 05 00
00 10 025 025 00 05 00 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . .

5
025 025 10 00 05 05 00 00
025 025 00 10 00 00 05 05
05 00 05 00 10 00 00 00
00 05 05 00 00 10 00 0

.
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .

0
05 00 00 05 00 00 10 00
00 05 00 05 00 00 00 10

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

[9.11]

From the two matrices above ([9.10] and [9.11]), the regression coefficients
[9.7] are:

′ = − − − −b [ . . . . . . . . ]05 05 05 05 025 025 025 025 [9.12]

which are identical to the coefficients in equation [9.6]. It should be noted
that there is no need to add more remote ancestors of S and D as the partial
regression of these is zero.

9.3.1 Inverse of the relationship matrix of subclass effects

The recurrences in equation [9.6] could be represented as:

f Qf= + e [9.13]

where f is the vector of sire by dam subclasses and the row i of Q contains
the elements of b from equation [9.7] in columns pertaining to identified
parent subclasses of subclass i. The relationship matrix for subclasses in f
is F f= var( )/s f

2. From equation [9.13]:

f I Q= − −( ) 1e

The variance–covariance of f is:

var( ) ( ) ( )f F I Q R I Q= = − ′ −− −s sf f
2 1 1 2

with:

Rs f
2 = var( )e

Therefore:

F I Q R I Q− − −= − ′ −1 1 1( ) ( ) [9.14]
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The diagonal elements R can be obtained from equation [9.8]. The
off-diagonals are zeros if all ancestors subclasses providing relationship
ties are included in f. To ensure a diagonal R, Hoeschele and VanRaden
specified two conditions to be used in deciding which subclasses should
be included in f as known. These are:

1. A subclass should remain in f if any of its parent subclasses remain in f.
2. A subclass should remain in f if f contains two or more of its immedi-
ate progeny subclasses.

Equation [9.14] implies that F −1 can be calculated from a list of sub-
classes and their parent subclass effects by computing for the ith subclass,
rii (the diagonal element i of R−1) and ci (the ith row of (I − Q)). Then the
contribution of the ith subclass to F −1 is calculated as c c ri i

ii′ . In summary,
the following procedure could therefore be used to calculate F −1:

1. List animals and their sires and dams. Parents not in the list of ani-
mals with more than one progeny should be added to the list while those
with one progeny may be treated as unknown.
2. Form a list of all filled (S and D known) subclasses and add ancestor
subclasses that provide ties. Ancestors are identified by listing subclasses
for the sire with parents of the dam and for the dam with parents of the sire
for each filled subclass and then repeating this process for the subclasses
just added until no further ancestors are known. The same sex subclasses of
animal i with animal j and of animal j with animal i should be treated as
identical when listing ancestor subclasses. The list of subclasses is sorted
such that progeny subclass precedes its parent subclasses. Commencing
with the oldest ancestor subclass, subclasses could be regarded as
unknown if they are not filled, have no known parents and provide no ties
for at least two filled descendant subclasses.

The number of connections provided by an ancestor subclass may be
approximately determined from counts formed when ancestor subclasses
are being identified originally. Progeny subclass (fSD) would contribute 1
to parent subclasses of type fS,SD and fSS,D but −1 to parent subclasses of
type fSS,SD. The subtraction of 1 is due to the fact that fS,SD and fSS,D are
regarded as progeny subclasses of fSS,SD and both may have come from one
fSD. It should be noted, however, that some subclasses which should be
deleted for having a count of less than two may be needed in order to
achieve a diagonal R. Thus, if both fS,SD and fSS,D are known, for instance, it
may be necessary to add back subclasses of type fSS,SD if they have been
deleted for a count of less than two.
3. Go through the list of all subclasses and calculate contributions (coef-
ficients) of each subclass i to F −1 as r c ci i

11 ′ . The vector ci contains
non-zero coefficients, which is equal to 1 in subclass i and equal to −b for
parent subclasses, with b computed as in equation [9.7].
4. Sort the coefficients by columns within rows and sum those with
identical columns and rows to obtain F −1.
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202 Chapter 9

9.3.2 Prediction of dominance effects

So far, the discussion has been on the inverse of the relationship matrix for
subclass effects but the major interest is the prediction of dominance effects.

Since the inheritance of dominance effects is from subclass effects,
dominance effects can be predicted by the inclusion of the inverse of the
relationship matrix (D*) among dominance effects and subclass effects in
the mixed model equations. From [9.5] and [9.13] the dominance (d) and
subclass effect (f) may be predicted as:

d
f

S
Q

d
f e

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ + ⎡

⎣
⎢

⎤

⎦
⎥

0
0

b

with:

var
d
f

D*
⎡

⎣
⎢

⎤

⎦
⎥ = sd

2

and:

var
.

.
b

e
I

R
⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

075 0
0 025

2sd

where S is the incidence matrix relating d to f, and b equals d minus Sf.
Therefore:

d
f

I S
I Q e

⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

−

0

1 b

and the inverse of D* can be computed as:

D
I

S I Q
I

R
I S

I Q*
( / )−

−
=

− ′ − ′
⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥

−
−

⎡

⎣
⎢

⎤

⎦
1

1

0 4 3 0
0 4 0 ⎥ [9.15]

From the above, the inverse of D* is similar to F −1 with coefficients of
4
3 on the diagonals of dominance effects, − 4

3 of off-diagonals linking domi-
nance to subclass effects and the coefficients contributed by the subclass
effects are multiplied by 4. The matrix D*

−1 can then be included in the
mixed model equations, resulting in the prediction of both dominance and
subclass effects. The only disadvantage is that the inclusion of subclass
effects in the MME will increase the order of equations but the method
can easily be applied to large data sets.

9.3.3 Calculating the inverse of the relationship matrix among dominance and
subclass effects for example data

Example 9.3
Using the pedigree information in Example 9.1, the calculations of F −1

and D*
−1 are illustrated.
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SETTING UP F−1

Application of rules 1 and 2 in Section 9.3.1 for calculating F −1 generated
Table 9.1. Creating a list of filled subclasses in the first pass (pass 1)
through the pedigree in reverse order generated subclasses A to E (sorted
by sire) in Table 9.1. Passes 2 and 3 through this list identified all ancestor
subclasses (subclasses F to N). Counts to determine whether ancestor sub-
classes are treated as known or unknown were calculated as specified ear-
lier. Subclasses of the types fS,SD and fSS,SD received a count of 1 and −1,
respectively, from progeny subclass fSD. Thus subclass f3,5 received a
count of 1 from each of its progeny subclasses, f3,8 and f6,5, and a count of
−1 from f6,8. Again f4,1 received 1 each from f6,1 and f4,5 and −1 from f6,5.
Proceeding through the ancestor subclasses (F to N), those with a count of
1 and with less than two progeny subclasses known are regarded as
unknown. Only the ancestor subclass f3,5 is regarded as known because
two of its progeny subclasses (f3,8 and f6,5) were known although it had a
count of 1.

Using rule 3, the contribution of subclass i regarded as known (subclasses
1 to 6 (see Table 9.1)) to F −1 is then calculated as c ci i

iir′ . For example, for
the subclass f6,8 (subclass 1), three parent subclasses are known, 2, 3 and 6,
which are of the subclass type, fS,DD, fSS,D and fSS,DD, respectively. Therefore

′ = − ′ = − ′ = − − −b c b1 1 105 05 025 1 1 05 05 025[ . . . ], [ ] [ . . . ]. The matrix F1, the

Non-additive Animal Models 203

Sire � dam
subclass

Pass
subclass

Counts from
progeny

Known
parent

� S D added subclasses Status � subclasses

A 6 8 1 KN 1 2 3 6
B 6 5 1 1 KN 2 3 6
C 3 8 1 1 KN 3 6
D 3 4 1 KN 4
E 1 2 1 KN 5
F 4 8 2 1 UK
G 3 5 2 1 + 1 − 1 = 1 KN 6
H 6 1 2 1 UK
I 6 2 2 1 UK
J 4 5 2 1 + 1 − 1 = 1 UK
K 3 1 3 1 + 1 − 1 = 1 UK
L 3 2 3 1 + 1 − 1 = 1 UK
M 4 1 3 1 + 1 − 1 = 1 UK
N 4 2 3 1 + 1 − 1 = 1 UK

� = consecutive label for subclasses; S, sire; D, dam; KN, known, UK, regarded as
unknown; � = consecutive number for known subclasses.

Table 9.1. List of filled sire × dam subclasses and ancestor subclasses.
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relationship among parent subclasses 2, 3 and 6 (see [9.13]) is:

F1

2 3 6
100 025 050
025 100 050
050 050 100

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
. . .
. . .
. . .

⎥
⎥

The contribution of f6,8 to F −1 therefore is:

c c1 1
11

1 2 3 6
100 050 050 025
050 025 025 0125′ =

− −
− −r

. . . .

. . . .
− −

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

050 025 025 0125
025 0125 0125 00625
. . . .
. . . .

⎥
⎥

1778.

where r 11
11 1 1 1 04375 1778= − ′ = − =/( ( )) /( . ) .b F b1 1 (see equation [9.8]).

Processing of all subclasses gives F 1 as:

1 2 3 4 5 6

1778 0889 0889 0000 0000 0445

0889 1

1F − =

− −

−

. . . . . .

. .778 0445 0000 0000 0889

0889 0445 1778 0000 0000

. . . .

. . . . .

−

− −0889

0000 0000 0000 1000 0000 0000

0000 0000 000

.

. . . . . .

. . . 0 0000 1000 0000

0445 0889 0889 0000 0000 1778

. . .

. . . . . .− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The methodology can be verified by calculating the dominance rela-
tionship matrix among animals as D SFS I= ′ +( . ) ( . )025 075 , which should
give the same D as that calculated using [9.1]. S, as defined earlier, relates
dominance effects to subclass effects. For the example pedigree:

′ =S

5 6 7 9 10 11 12
1 0 0 0 0 0 1 1
2 0 0 1 0 0 0 0
3 0 0 0 1 1 0 0
4 0 1 0 0 0 0 0
5 1 0 0 0 0 0 0
6 0 0 0 0 0 0 0

and:

D SFS I= ′ +( . ) ( . )025 075
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5 6 7 9 10 11 12

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 00625 00625 0125 0125

=
. . . .

0 0 00625 1 025 0125 0125
0 0 00625 025 1 0125 0125
0 0 0

. . . .

. . . .

.125 0125 0125 1 025
0 0 0125 0125 0125 025 1

. . .
. . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

which is the same as the D (Section 9.2.1) calculated from the pedigree
using [9.1].

Let D*
−1 be partitioned as:

D
D D
D D*

* *

* *

−
− −

− −
=

⎡

⎣
⎢

⎤

⎦
⎥1 11

1
12
1

21
1

22
1

where D*11
1− is the top 12 by 12 block for dominance effects for animals,

D*22
1− is the bottom 6 by 6 block for subclass effects and D*12

1− is the block for
dominance by subclass effects. For the example data using [9.15], the
sub-matrices of D*

−1 are:

D*11
1− = diag(4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3)

D*

. .
.

21
1

0 0 0 0 0 0 0 0 0 0 1333 2333
0 0 0 0 0 0 1333 0 0 0 0 0
0 0 0 0− =

− −
−

0 0 0 0 1333 1333 0 0
0 0 0 0 0 1333 0 0 0 0 0 0
0 0 0 0 1333 0 0 0 0 0

− −
−

−

. .
.

. 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

D*12
1− is the transpose of D*21

1−

D*

. . . .

. . .

22
1

7 111 3556 3556 0 0 1778
3556 7 111 1778 0 0

− =

− −
− −3556

3556 1778 7 111 0 0 3556
0 0 0 40 0 0
0 0 0 0 40 0
1778

.
. . . .

.
.

.

− −

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

3556 3556 0 0 7 111. . .

The matrix D*
−1 can be included in the usual mixed model equations

for the prediction of dominance and subclass effects.
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9.4 Epistasis

Epistasis refers to the interaction among additive and dominance genetic
effects, for instance, additive by additive, additive by dominance, additive
by additive by dominance, etc. The epistasis relationship matrix can be derived
from A and D as:

A#A for additive by additive
D#D for dominance by dominance
AA#D for additive by additive by dominance

where # represents the Hadamard product of the two matrices. The ij ele-
ment of the Hadamard product of the two matrices is the product of the ij
elements of the two matrices. Thus, if M = A#B, then mij = (aij)(bij) where
the matrices A and B should be of the same order.

The model (equation [9.2]) can be expanded to include epistatic effects as:
y = Xb + Za + Wd + Sep + e

where ep is the vector of interaction (epistatic) effects. The evaluation can
be carried out as described in Section 9.2 but the major limitation is
obtaining the inverse of the epistatic relationship matrix for large data
sets. However, VanRaden and Hoeschele (1991) presented a rapid method
for obtaining the inverse of epistatic relationship matrix when epistasis
results from interactions between additive by additive (A � A) genetic
effects and the population is inbred or is not. The approach is similar to
the method described for obtaining the inverse of the dominance relation-
ship matrix and it involves including sire � dam subclasses; consequently,
the details of the method are not covered in this text. The method involves
calculating the inverse of U, the relationship matrix among epistatic and sub-
class effects, and U −1 is then included in the usual mixed model equations
for the prediction of epistatic and sire � dam subclass effects.

The rules for obtaining U −1 for a population that is not inbred are
given in the next section, with an illustration.

9.4.1 Rules for the inverse of the relationship matrix for epistatic and subclass effects

The inverse of U can be computed by going through a list of individuals
and their parents and sire � dam subclasses. See rules 1 and 2 in Section
9.3.1 on how such a list should be set up. The contribution of individual i
in the list to U −1 is computed by the following rules:

1. For an individual i with sire (s) and dam (d) and subclass effects (s, d)
known, the contribution to U −1 is

c s d s d( , )

( /

16 4 4 16
4 1 1 4
4 1 1 4

16 4 4 16

1 1

− − −
−
−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2) [9.16]
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2. For an individual with both parents known but subclass effects treated
as unknown, the contribution to U −1 is:

c s d
16 4 4

4 1 1
4 1 1

1 14
− −

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
( / ) [9.17]

3. If only one parent, say, sp is known, the contribution is:
c s
16 4

4 1
1 15

−
−

⎡

⎣
⎢

⎤

⎦
⎥ ( / ) [9.18]

4 If both parents and subclass are unknown, add 1 to the individual
diagonal.
5. For sire � dam subclasses, the contribution of the ith subclass to U −1

is the same as for the inverse of the dominance matrix (see rule 3 in Sec-
tion 9.3.1) except that the coefficients are multiplied by 8.
6. Sort coefficients by row and by columns within row, and sum coeffi-
cients with identical rows and columns to obtain U −1.

The method can be verified by inverting U −1 to form U. The animal by ani-
mal submatrix of U should be equal to the epistatic relationship matrix
calculated as A#A.

9.4.2 Calculating the inverse relationship matrix for epistasis and the subclass
matrix for an example pedigree

Example 9.4
The calculation of U −1 is illustrated below using the pedigree information
in Example 9.1.

The identification of sire and dam subclasses and their ancestor sub-
classes treated as known has been discussed in Section 9.3.3. Thus the list
of animals and known subclasses is:

Animal Sire Dam

1 0 0
2 0 0
3 0 0
4 0 0
5 1 2
6 3 4
7 6 5
8 0 5
9 3 8

(Continued)
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(Continued)

Animal Sire Dam

10 3 8
11 6 8
12 6 8

Subclasses Parent subclasses
6,8 6,5, 3,8, 3,5
6,5 3,8, 3,5
3,8 3,5
3,4
1,2
3,5

In setting up U −1, animals 1 to 12 have been regarded as rows 1 to 12
while subclasses have been assigned rows 13 (subclass (6,8)) to 18 (sub-
class (3,5)). The first four animals have both parents and sire–dam sub-
classes unknown and therefore each contributes 1 to their respective
diagonals. The parents of animals 5, 6, 7, 10, 11 and 12 and their sire �
dam subclass effects are known, therefore the contributions of each of
these animals to U −1 are computed using rule 1 in Section 9.4.1. For ani-
mals 8 and 9, only one of their parents is known and rule 3 is applicable
when processing these animals. The calculation of the contributions of
subclass effects has been given in Section 9.3.3 (Example 9.3); these are
multiplied by 8, as mentioned earlier. After processing all animals and
subclass effects, the top 12 by 12 submatrix of U −1 (block for animals
only) is:

1083 0083 0000 0000 0333 0000 0000 0000 0000 000. . . . . . . . . .− 0 0000 0000
0083 1083 0000 0000 0333 0000 0000 00

. .
. . . . . . . .− 00 0000 0000 0000 0000

0000 0000 1250 0083 0000 0
. . . .

. . . . . .− 333 0000 0167 0333 0333 0000 0000
0000 0000 0083

. . . . . .
. . .

− −
1083 0000 0333 0000 0000 0000 0000 0000 0000

03
. . . . . . . . .

.
−

− 33 0333 0000 0000 1 483 0083 0333 0267 0000 0000− − −. . . . . . . . . 0000 0000
0000 0000 0333 0333 0083 1583 0333 0

. .
. . . . . . . .− − − 167 0000 0000 0333 0333

0000 0000 0000 0000 033
. . . .

. . . . .
− −

− 3 0333 1333 0000 0000 0000 0000 0000
0000 0000 01

− . . . . . . .
. . . 67 0000 0267 0167 0000 1 400 0333 0333 0333 03. . . . . . . . .− − − − − 33

0000 0000 0333 0000 0000 0000 0000 0333 1333 0. . . . . . . . .− − . . .
. . . . . . .

000 0000 0000
0000 0000 0333 0000 0000 0000 0000− −0333 0000 1333 0000 0000
0000 0000 0000 0000 000

. . . . .
. . . . . 0 0333 0000 0333 0000 0000 1333 0000

0000 0000 0
− −. . . . . . .

. . .000 0000 0000 0333 0000 0333 0000 0000 0000 1333. . . . . . . . .− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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The top 12 by 12 submatrix of the inverse U −1 is the epistatic relation-
ship matrix for the animals and is:

1000 0000 0000 0000 0250 0000 0063 0063 0016 0016. . . . . . . . . . 0016 0016
0000 1000 0000 0000 0250 0000 0063 0063

. .
. . . . . . . . 0016 0016 0016 0016

0000 0000 1000 0000 0000 0250
. . . .

. . . . . . 0063 0000 0250 0250 0063 0063
0000 0000 0000 1000

. . . . . .
. . . . 0000 0250 0063 0000 0000 0000 0063 0063

0250 0250
. . . . . . . .

. . 0000 0000 1000 0000 0250 0250 0063 0063 0063 0063. . . . . . . . . .
0000 0000 0250 0250 0000 1000 0250 0000 0063 0063. . . . . . . . . . 0250 0250
0063 0063 0063 0063 0250 0250 1000 0063

. .
. . . . . . . . 0063 0063 0141 0141

0063 0063 0000 0000 0250 0000
. . . .

. . . . . . 0063 1000 0250 0250 0250 0250
0016 0016 0250 0000

. . . . . .
. . . . 0063 0063 0063 0250 1000 0250 0141 0141

0016 0016
. . . . . . . .

. . 0250 0000 0063 0063 0063 0250 0250 1000 0141 0141. . . . . . . . . .
0016 0016 0063 0063 0063 0250 0141 0250 0141 0141. . . . . . . . . . 1000 0250
0016 0016 0063 0063 0063 0250 0141 0250

. .
. . . . . . . . 0141 0141 0250 1000. . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

It is equal to the epistatic relationship matrix calculated as A#A. The
matrix U −1 can then be incorporated in the usual mixed model equations
for the prediction of epistatic and subclass effects.
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10 Analysis of Ordered Categorical
Traits

Some traits of economic importance in animal breeding, such as calving
ease or litter size, are expressed and recorded in a categorical fashion. For
instance, in the case of calving ease, births may be assigned to one of
several distinct classes, such as difficult, assisted and easy calving, or lit-
ter size in pigs might be scored 1, 2, 3 or more piglets born per sow. Usu-
ally, these categories are ordered along a gradient. In the case of calving
ease, for example, the responses are ordered along a continuum measur-
ing the ease with which birth occurred. These traits are therefore termed
ordered categorical traits. Such traits are not normally distributed and
animal breeders have usually attributed the phenotypic expression of cat-
egorical traits to an underlying continuous unobservable trait which is
normally distributed, referred to as the liability (Falconer and MacKay,
1996). The observed categorical responses are therefore due to animals
exceeding particular threshold levels (ti) of the underlying trait. Thus,
with m categories of responses, there are m − 1 thresholds such that
t1 < t2 < t3, … , tm −1. For traits such as survival to a particular age or stage,
the variate to be analysed is coded 1 (survived) or 0 (not survived) and
there is basically only one threshold.

Linear and non-linear models have been applied for the genetic analy-
sis of categorical traits with the assumption of an underlying normally
distributed liability. Usually, the non-linear (threshold) models are more
complex and have higher computing requirements. The advantage of the
linear model is the ease of implementation as programmes used for analy-
sis of quantitative traits could be utilized without any modifications.
However, Fernando et al. (1983) indicated that some of the properties of
best linear unbiased prediction (BLUP) do not hold with categorical traits.
Such properties include the invariance of BLUP to certain types of culling
(selection) and the ability of BLUP to maximize the probability of correct
pairwise ranking. Also Gianola (1982) indicated that the variance of a

© R.A. Mrode 2005. Linear Models for the Prediction of Animal Breeding Values,
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categorical trait is a function of its expectation and the application of a
linear model that has fixed effects in addition to an effect common to all
observations results in heterogeneity of variance.

In a simulation study, Meijering and Gianola (1985) demonstrated
that, with no fixed effects and a constant or variable number of offspring
per sire, an analysis of a binary trait with either a linear or non-linear
model gave similar sire rankings. This was independent of the heritability
of the liability or incidence of the binary trait. However, with the inclu-
sion of fixed effects and a variable number of progeny per sire, the
non-linear model gave breeding values which were more similar to the
true breeding values compared with the linear model. The advantage of
the threshold model increased as the incidence of the binary trait and its
heritability decreased. Thus, for traits with low heritability and low inci-
dence, a threshold model might be the method of choice.

The principles required to apply a linear model for the analysis of cat-
egorical traits are the same as discussed in the previous chapters; there-
fore the main focus of this chapter is on threshold models, assuming a
normal distribution for the liability. Cameron (1997) illustrated the analy-
sis of a binary trait with a threshold model, using a logit function. In this
chapter sample data used for the illustration of the threshold model have
also been analysed with a linear model.

10.1 The Threshold Model

10.1.1 Defining some functions of the normal distribution

The use of the threshold model involves the use of some functions of the
normal distribution and these are briefly defined. Assume the number of
lambs born alive to ewes in the breeding season is scored using four cate-
gories. The distribution of the liability for the number of lambs born alive
with three thresholds (ti) can be illustrated as in Fig. 10.1, where Nj is the
number of ewes with the jth number of lambs and these exceed the thresh-
old point tj−1, with j > 1 and j ≤ m − 1.

With the assumption that the liability (l) is normally distributed (l ~
N(0,1)), the height of the normal curve at tj (f(tj)) is:

/ = −o t tj j( ) exp( . )/05 22 p [10.1]

For instance, given that tj = 0.779, then f(0.779) = 0.2945.
The function Φ() is the standard cumulative distribution function of

the normal distribution. Thus Φ(k) or Φk gives the areas under the normal
curve up to and including the kth category. Given that there are m catego-
ries, then Φk = 1 when the kth category equals m. For a variable x, for
instance, drawn from a normal distribution, the value Φx can be com-
puted, using a subroutine from the IMSL (1980) library. Thus, if x = 0.560,
then Φ(0.560) = 0.7123.
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P(k) defines the probability of a response being observed in category k
assuming a normal distribution. This is also the same probability that a
response is between the thresholds defined by category k. Thus P(k) or Pk

may be calculated as P(k) = Φ(k) − Φ(k − 1) with Φ(k − 1) = 0, when k = 1;
or, expressed in terms of thresholds defining the category k, Pk =
Φtk − Φt(k − 1). For instance, in Fig. 10.1, the probability of response in the k
category (Pk) can be computed as:

P1 = Φ(t1) [10.2]
P2 = Φ(t2) − Φ(t1) [10.3]
P3 = Φ(t3) − Φ(t2)
P4 = 1 − Φ(t4)

10.1.2 Data organization and the threshold model

Usually the data are organized into an s by m contingency table (Table
10.1), where the s rows represent individuals or herd–year subclasses of
effects, such as herd, and the m columns indicate ordered categories of
response. If the rows represent individuals, then all njk will be zero except
one and the nj. = 1, for j = 1, ... , s.

The linear model for the analysis of the liability is:

y Xb Zu e= + +

where y is the vector of liability on a normal scale, b and u are vectors of
fixed and random (sire or animal) effects, respectively, and X and Z are
incidence matrices relating data to fixed effects and response effects,
respectively. Since y is not observed, it is not possible to solve for u using
the usual mixed model equations. Given that H¢ = [t¢, b¢, u¢], where t is the
vector for the threshold effects, Gianola and Foulley (1983) proceeded to

Analysis of Ordered Categorical Traits 213

N1 N2

t2t1 t3

N3 N4

Fig. 10.1. The distribution of liability for number of lambs born alive with four cate-
gories and three thresholds.
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find the estimator $H that maximizes the log of the posterior density L(H).
The resulting set of equations involved in the differentiation was not lin-
ear with respect to H. They therefore provided the following non-linear
iterative system of equations based on the first and second derivatives,
assuming a normal distribution, to obtain solutions for ∆t, ∆b and ∆u

Q L X L Z
X L X WX X WZ
Z L Z WX Z WZ A G

t
b

′ ′
′ ′ ′
′ ′ ′ +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥− −1 1

D

D

Du

p
X v
Z v

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ′
′ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥− −A G u1 1

[10.4]

withG I I= s ss u
2 2or if a sire or an animal model is being fitted in a univariate

situation. They presented equations for the calculation of the matrices in
equation [10.4], which are outlined below. The calculation of most of these
matrices involves Pjk (see equation [10.2]) and it is initially described. Pjk, the
response in the kth category under the conditions of the jth row, is:

P t a t a k m j sjk k j k j= − − − = − =−F F( ) ( ); , ; , ,1 1 1 1 K [10.5]

where aj = (xjb + zju), with xj and zj being the jth row of X and Z, respec-
tively. This equation is not different from that in Section 10.1.1 but it shows
that the distribution of response probabilities by category is a function of the
distance between aj and the threshold. Similarly, the height of the normal
curve at tk (equation [10.1]) under the conditions of the jth row becomes:

f fjk k jt a= −( ) [10.6]

The formulae for computing the various matrices and vectors in [10.4]
are outlined below.

The jth element of vector v can be calculated as:

v j =
−⎛

⎝
⎜

⎞

⎠
⎟

=

−∑ n
p

jk
k

m
j k jk

jk1

1f f( ) [10.7]
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Categoriesa

Subclasses 1 2 ··· k ··· m Totalsb

1 n11 n12 ··· n1k ··· n1m n1.

2 n21 n22 ··· n2k ··· n2m n2.

� � � �
j nj1 nj2 ··· njk ··· njm nj.

� � � �
s ns1 ns2 ··· nsk ··· nsm ns.

a njk = number of counts in category k of response in row j.
b n nj k

m
jk. = =S 1 .

Table 10.1. Ordered categorical data arranged as an s by m
contingency table.

228
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:24:57 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



The elements of the matrix W, which is a weighting factor, are com-
puted as:

w jj j
j k jk

jkk

m
n

p
=

−−

=
∑.

( )( )f f1
2

1

[10.8]

The matrix Q is an (m − 1) by (m − 1) banded matrix and the diagonal
elements are calculated as:

q n
P P

P P
kkk j

jk j k

jk j k
jk

j

s
=

−
=+

+=
∑ .

( )

( )
, (1

1

2

1

1f for to m − 1) [10.9]

and the off-diagonal elements are:

q n
P

k mk k j
j k jk

j kj

s

( ) .
( )

( )
, (+

+

+=
= − = −∑1

1

11

1 2
f f

for to ) [10.10]

with the element q qk k k k( ) ( )+ +=1 1 .
The matrix L is of order s by (m − 1) and its jkth element is calculated

as:

l n
P P

jk j jk
jk j k

jk

j k jk

j k
= −

−
−

−⎛

⎝
⎜

⎞

⎠
⎟− +

+
.

( ) ( )

( )
f

f f f f1 1

1
[10.11]

The vector p is accumulated over all subclasses and its elements are:

P
n

P

n

P
kk

jk

jk

j k

j kj

s

jk= −
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

+=
∑ ( )

( )
;1

11

f = −1 1, m [10.12]

The remaining matrices in equation [10.4] can be computed by matrix
multiplication.

10.1.3 Numerical example

Example 10.1
The analysis of categorical traits is illustrated below, using the calving ease
data described by Gianola and Foulley (1983), but with a relationship matrix
included for the sires and the age of dam effect omitted from the model. The
data consisted of calving ease scores from 28 male and female calves born in
2 herd–years from cows mated to four sires. Cows were scored for calving
ease using three ordered categories: 1 = normal birth, 2 = slight difficulty and
3 = extreme difficulty. The data set is presented in Table 10.2.

The following pedigree was assumed for the four sires:

Animal Sire Dam

1 0 0
2 0 0
3 1 0
4 3 0

Analysis of Ordered Categorical Traits 215
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The sire variance used in the analysis was assumed to be 1
19. In the

underlying scale, residual variance equals one; therefore s se s
2 2/ =

4 − h2/h2 = 19. Thus the s s
2 assumed corresponded to a heritability of 0.20

on the underlying scale.
The vectors of solutions in [10.4] for the example data are:

t¢ = (t1 t2), since there are two thresholds
b¢ = (h1 h2 h1 h2)
u¢ = (u1 u2 u3 u4)

where hi and hi represent solutions for level i of the herd–year and the sex
of calf effects, respectively, and u is the vector of solutions for sires.

The inverse of the relationship for the assumed pedigree is:

A − =

−

1

13333 00000 06667 00000
00000 10000 00000 00
. . . .
. . . . 000

06667 00000 16667 06667
00000 00000 06667 1

− −
−

. . . .

. . . .3333

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

For the example data, the transpose of matrix X, which relates sub-
classes to herd–year and sex of calf effects, and that of matrix Z, which

216 Chapter 10

Sex of Sire of
Category of responsea

Herd calf calf 1 2 3 Total

1 M 1 1 0 0 1
1 F 1 1 0 0 1
1 M 1 1 0 0 1
1 F 2 0 1 0 1
1 M 2 1 0 1 2
1 F 2 3 0 0 3
1 M 3 1 1 0 2
1 F 3 0 1 0 1
1 M 3 1 0 0 1
2 F 1 2 0 0 2
2 M 1 1 0 0 1
2 M 1 0 0 1 1
2 F 2 1 0 1 2
2 M 2 1 0 0 1
2 F 3 0 1 0 1
2 M 3 0 0 1 1
2 M 4 0 1 0 1
2 F 4 1 0 0 1
2 F 4 2 0 0 2
2 M 4 2 0 0 2

a 1= normal birth, 2 = slight difficulty, 3 = extreme difficulty.

Table 10.2. Distribution of calving ease score by herd–year and sex of
calf subclasses.
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relates subclasses to sires, are:

′ =X

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

and:

′ =Z

1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Starting values for t, b and u are needed to commence the iterative pro-
cess. Let b = u = 0, but starting values for ti can be computed from the
proportion of records in all categories of response preceding ti. In Example
10.1, there is only one category before t1 and 0.679 of the records are in
this category. The first two categories precede t2 and 0.857 of the records
are observed in the two categories. Using these proportions, the values of t
can be obtained from the usual table of standardized normal deviates of
the normal distribution. From these proportions, t1 = 0.468 and t2 = 1.080
and these were used as starting values. However, using various starting
values of t, Gianola and Foulley (1983) demonstrated that the system of
equations converged rapidly. It seems, therefore, that the system of equa-
tions is not very sensitive to starting values for t. The calculations of the
various matrices in the equations have been illustrated below using solu-
tions obtained after the first iteration. The solutions obtained at the end of
the first iteration and the updated estimates for the effects (which are now
the starting values for the second iteration) are:

Solutions at the end of
iteration one

Updateda estimates after
iteration one

∆t1 = −0.026992 t1 = 0.441008
∆t2 = −0.035208 t2 = 1.044792
∆ $h1 = 0.000000 $h1 = 0.000000
∆ $h2 = 0.286869 $h2 = 0.286869
∆h1 = 0.000000 h1 = 0.000000
∆h2 = − 0.358323 h2 = −0.358323
∆u1 = −0.041528 u1 = −0.041528
∆u2 = 0.057853 u2 = 0.057853
∆u3 = 0.039850 u3 = 0.039850
∆u4 = −0.065178 u4 = −0.065178

a The updated estimates were obtained as the sum of the
starting values and the solutions at the end of the first iteration.
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The following steps are involved in calculating Pjk, which is required
to calculate subsequent matrices in the set of equations shown in [10.4]
using the example data. In each round of iteration and for each subclass,
that is, for j = 1, … s:

1. Initially calculate ( )t ak j− in equation [10.5] for k = 1, … m − 1.
Therefore:

djk = (tk − aj) = tk − xj − zj for k = 1, ... m − 1

where xj and zj are the jth rows of X and Z.
For the example data in the second iteration:

d t h u11 1 1 1 1= − − −$ $ $h

d11 0441008 0 0 0041528 0482536= − − − − =. ( . ) .

d t h u12 2 1 1 1= − − −$ $ $h

d12 1044792 0 0 0041528 1086320= − − − − =. ( . ) .

d t h u21 1 1 2 1= − − −$ $ $h

d21 0441008 0 0358323 0041528 0840859= − − − − − =. ( . ) ( . ) .

d t h u22 2 1 2 1= − − −$ $ $h

d22 1044792 0 0358323 0041528 1444643= − − − − − =. ( . ) ( . ) .

M

d t h u201 1 2 1 4= − − −$ $ $h

d201 0441008 0286869 0 0065178 0219317= − − − − =. . ( . ) .

d t h u202 1 2 1 4= − − −$ $ $h

d202 1044792 0286869 0 0065178 0823101= − − − − =. . ( . ) .

2. Using the values of djk computed above, calculate fjk (see equation
[10.6]) and Fjk, for k = 0, … , m. Note that, in all cases, when k = 0, fjk =
�jk = 0 and, when k = m, fjk = 0 and Φjk = 1.

In the second round of iteration for the example data:

f f11 110482536 0355099 0482536 068528= = = =( . ) . ( . ) .and F F 8

f f12 121086320 0221135 1086320 086133= = = =( . ) . ( . ) .and F F 1

f f21 210840859 0280142 0840859 079978= = = =( . ) . ( . ) .and F F 7

f f22 221444643 0140516 1444643 092572= = = =( . ) . ( . ) .and F F 1

M

f f201 2010219317 0389462 0219317 0586= = = =( . ) . ( . ) .and F F 799

f f202 2020823101 0284311 0823101 0794= = = =( . ) . ( . ) .and F F 775
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3. Then calculate Pjk as F Fjk j k k m− =−( ) ,1 1for K .
In the second round of iteration, for Example 10.1:

P11 11 10 0685288 0 0685288= − = − =F F . .

P12 12 11 0861331 0685288 0176044= − = − =F F . . .

P13 13 13 10 0861331 0138669= − = − =F F . . .

P21 21 20 0799787 0 0799787= − = − =F F . .

P22 22 21 0925721 0799787 0125934= − = − =F F . . .

P23 23 22 10 0925721 0074279= − = − =F F . . .

M

P201 201 200 0586799 0 0586799= − = − =F F . .

P202 202 201 0794775 0586799 0207976= − = − =F F . . .

P203 203 202 10 0794775 0205225= − = − =F F . . .

The calculation of the remaining matrices in the mixed model equa-
tions (MME) can now be illustrated for the example data. The first elements
of W using equation [10.8] for the example data are:

w 11

2 2
1

0 0355099
0685288

0355099 0221135
01

= − + −( . )
.

( . . )
. 76044

0221135 0
0138669

0638589

2
+ −⎡

⎣⎢
⎤
⎦⎥

=

( . )
.

.

and:

W = diag[0.638589 0.518748 0.638589 0.554385 1.332860
1.663156 1.323206 0.548036 0.661603 1.233768
0.710404  0.710404 1.293402 0.728641 0.641496
0.725614 0.705526  0.609417 1.218834 1.411052]

For the vector v, the first element can be calculated from equation [10.7] as:

v 1
1 0 0355099

0685288
0 0355099 0221135

0176
= − + −( . )

.
( . . )

. 044
0 0221135 0

0138669
0518175

+ −

= −

( . )
.

.
and the transpose of v is:

v′ = [−0.518175 −0.350270 −0.518175 1.012257 0.943660
−1.179520 0.120754 1.029729 −0.561257 −0.963633
−0.677635 1.366976 1.039337 −0.737615 0.751341

1.304294 0.505592 −0.470090 −0.940181 −1.327414]
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The matrix L is order 20 by 2 for the example data. The elements in
the first row of L from equation [10.11] can be calculated as:

l11 1 0355099
0355099 0

0685288
0221135 0= − − − −

( )( . )
( . )

.
( . . )

.
.

355099
0176044

0454223⎡
⎣⎢

⎤
⎦⎥

= −

l12 1 0221135
0221135 0355099

0176044
0 0= − − − −

( )( . )
( . . )

.
( . )

.
.

221135
0138669

0184365⎡
⎣⎢

⎤
⎦⎥

= −

The matrix L has not been shown because it is too large but the elements
of the last row, l201 and l202, are −0.910795 and −0.500257, respectively.

The elements of Q calculated using equations [10.9] and [10.10] are:

q11

21 0355099 0685287 0176044
0685286 0176

= +
+

( . ) ( . . )
( . . 044

1 0280142 0799787 0125934
0799787 0

2

)
( . ) ( . . )

( .

+ ⋅ ⋅ ⋅

+
+ . )

( . ) ( . . )
( .

125934
2 0389462 0586799 0207976

05867

2

+ ⋅ ⋅ ⋅

+
99 0207976

25072830
+

=
. )

.

q12
1 0355099 0221135

0176044
1 0280142 0= − +[ ( . )( . )

.
( . )( .140516

0125934
2 0389462 0284311

0207976
12

)
.

( . )( . )
.

+

= −

L

.566598

q22

21 0221135 0176044 0138669
0176044 0138

= +
+

( . ) ( . . )
( . . 669

1 0140516 0125934 0074279
0125934 0

2

)
( . ) ( . . )

( .

+ ⋅ ⋅ ⋅

+
+ . )

( . ) ( . . )
( .

074279
2 0284311 0207976 0205225

0207976

2

+

+

L

+
=

0205225
17928093

. )
.

Since Q is symmetric, q21 = q12.
Lastly, the elements of p can be calculated using equation [10.12] as:

p1 0355099
1

0685287
0

0176044

0280142
1

0

= −⎛
⎝⎜

⎞
⎠⎟

+ ⋅ ⋅ ⋅.
. .

.
. .

.
. .

799787
0

0125934

0389462
2

0586799
0

020

−⎛
⎝⎜

⎞
⎠⎟

+ ⋅ ⋅ ⋅

−
7976

0288960⎛
⎝⎜

⎞
⎠⎟

= − .
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p2 0221135
0

0176044
0

0138669

0140516
0

0

= −⎛
⎝⎜

⎞
⎠⎟

+ ⋅ ⋅ ⋅.
. .

.
. .

.
. .

125934
0

0074279

0284311
0

0207976
0

020

−⎛
⎝⎜

⎞
⎠⎟

+ ⋅ ⋅ ⋅

−
5225

0458984⎛
⎝⎜

⎞
⎠⎟

= .

The matrices in equation [10.4] can now be obtained by matrix
multiplication and A−1 is added to Z¢WZ. The matrix Z¢WZ + A−1G−1 is
illustrated below:

′ + =

−

− −Z WZ A G1 1

29783773 0000000 12666731 0000000
00
. . . .
. 00000 24572445 0000000 0000000

12666731 0000000 35
. . .

. .− . .

. . . .
566685 12666731

0000000 0000000 12666731 292781
−

− 62

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Then equation [10.4] is:

25073 12567 5733 6733 6366 6140 3123 3977. . . . . . . .− − − − − − − −2699 2707
12567 17928 2146 3215 3220 2141 1

. .
. . . . . .

−
− − − − − − . . . .

. . . . .
327 1595 1201 1238

5733 2146 7879 0000 4595 3
− − −

− − . . . . .
. . . . .

284 1796 3550 2533 0000
6773 3215 0000 9989 499− − 2 4997 2655 2022 1367 3945
6366 3220 4595 4992 9

. . . . .
. . . . .− − 586 0000 2698 2062 2710 2117

6140 2141 3284 4997
. . . . .

. . . .− − 0000 8281 1753 3511 1190 1828
3123 1327 1796 26

. . . . . .
. . . .− − 55 2698 1753 29784 0000 12667 0000

3977 1595 35
. . . . . .

. . .
−

− − 50 2022 2062 3511 0000 24572 0000 0000
2699 1201

. . . . . . .
. .− − 2533 1367 2710 1190 12667 0000 35567 12667

270
. . . . . . . .

.
− −

− 7 1238 0000 3945 2117 1828 0000 0000 12667 29278− −. . . . . . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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D
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D
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$

$

$
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u

u
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1

2

1

2

1

2

3

4

h

h

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
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.

.

.

.

.

.

.

.
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0104
0021
0031
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−
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The equations were solved with the solutions for D 1
$h and D 1$h set to

zero. The equations converged rapidly, and solutions at various different
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iteration numbers and the final solutions are given below. Solutions
from an analysis using a linear model with an a value of 19 are also
shown:

Iteration number
Solution from

Effects 1 2 3 7 linear models

Threshold
1 0.4410 0.4375 0.4378 0.4378 ± 0.44a –
2 1.0448 1.0661 1.0675 1.0675 ± 0.47 –

Herd–year
1 0.0000 0.0000 0.0000 0.0000 ± 0.00 0.0
2 0.2869 0.2763 0.2774 0.2774 ± 0.49 1.0604

Sex of calf
M 0.0000 0.0000 0.0000 0.0000 ± 0.00 0.0
F −0.3583 −0.3577 −0.3589 −0.3590 ± 0.48 0.5193

Sire
1 −0.0415 −0.0431 −0.0434 −0.0434 ± 0.22 0.2229
2 0.0579 0.0586 0.0592 0.0592 ± 0.21 0.2751
3 0.0399 0.0410 0.0412 0.0412 ± 0.22 0.3162
4 −0.0652 −0.0653 −0.0660 −0.0660 ± 0.22 0.0985

a Standard errors.

The standard errors associated with the results from the last iteration
were computed from the square root of the diagonals of the generalized
inverse. Sire rankings from the linear model were similar to those from
the threshold model except for sires 2 and 3, which ranked differently.

Usually of interest is calculating the probability of response in a given
category under specific conditions. For instance, the proportion of calv-
ing in the jth category of response, considering only female calves in
herd–year–season 1 for sire 1, can be estimated as:

P t h u11 1 1 04378 0 03590 0043= − − − = − − − − −F F1 2( $ $ $ ) ( . ( . ) ( .h 4
08402 0800

))
( . ) .= =F

P t h u t h u12 1 1 1 1

10675 0
= − − − − − − −
= −

F F

F

2 2 1 2( $ $ $ ) ( $ $ $ )
( .

h h

− − − − −
= − =

( . ) ( . )) ( . )
( . ) ( . )

03590 00434 0800
14699 0800

F

F F 0129.

P t h u13 1 11 1 14699 0071= − − − − = − =F F2 2( $ $ $ ) ( . ) .h
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Calculating this probability distribution by category of response for
all sires gives the following:

Probability in category of response

1 2 3

Sire 1 0.800 0.129 0.071
Sire 2 0.770 0.145 0.086
Sire 3 0.775 0.142 0.083
Sire 4 0.803 0.129 0.068

The results indicate that the majority of heifers calving in herd–year–
season subclass 1 for all four sires were normal, with a very low propor-
tion of extreme difficulties.

Since sires are used across herds, the interest might be the probability
distribution of heifer calvings for each sire across all herds and sexes.
Such a probability for each sire in category 1 of response per herd–
year–sex subclass (Z1kji) can be calculated as follows:

Z t k ikji k j i1 1 2 1 4= − + + = =F 1( ( $ $ )); , ; , ,h uh K

Since there are four herd–year–sex subclasses, the probability for sire i in
category 1 ( )S i1 , can be obtained by weighting Z kji1 by factors that sum up
to one. Thus:

S a Zi km ikm
mki

1 1
1

2

1

2

1

4
=

===
∑∑∑

where a a a a akm = + + + =11 12 21 22 1. In the example data, a11 = a12 = a21 =
a22 = 0.25.

Similarly, the probability for each sire in category 2 of response per
herd–year–sex subclass ( )Z kji2 can be calculated as:

Z Z Zkji kji kji2 2 1= −*

where:

Z t k j ikji k j i1 1 2 1 2 1 4* ( ( $ $ )); , ; , ; , ,= − + + = = =F 2 h uh K

Finally, the probability for each sire in category 3 of response per
herd–year–sex subclass ( )Z kji3 can be calculated as:

Z Zkji kji3 21= − *
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224 Chapter 10

For Example 10.1, the probability distribution of heifer calvings for
each sire across all herds and sexes in all categories is as follows:

Probability in category of response

1 2 3

Sire 1 0.695 0.175 0.131
Sire 2 0.659 0.188 0.153
Sire 3 0.665 0.186 0.149
Sire 4 0.702 0.172 0.126

10.2 Joint Analysis of Quantitative and Binary Traits

Genetic improvement may be based on selecting animals on an index that
combines both quantitative and categorical traits. Optimally, a joint analysis
of the quantitative and categorical traits is required in the prediction of
breeding values in such a selection scheme to adequately account for selec-
tion. A linear multivariate model might be used for such analysis. However,
such an analysis suffers from the limitations associated with the use of a
linear model for the analysis of discrete traits mentioned in Section 10.1. In
addition, such a multivariate linear model will not properly account for
the correlated effects of the quantitative traits on the discrete trait.

Foulley et al. (1983) presented a method of analysis to handle the
joint analysis of quantitative and binary traits using a Bayesian approach.
It involves fitting a linear model for the quantitative traits and a non-
linear model for the binary trait. This section presents this methodology
and illustrates its application to an example data set.

10.2.1 Data and model definition

Assume that a quantitative trait, such as birth weight, and a binary trait,
such as calving difficulty (easy versus difficult calving), are being
analysed. As in Section 10.1.2, the data for calving difficulty could be
represented in an s by 2 contingency table:

Response category

Row Easy calving Difficult calving

1 n11 n1. – n11

2 n21 n2. – n21

� � �
j nj1 nj. – nj1
� � �
s ns1 ns. – ns1
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where the s rows refer to conditions affecting an individual or grouped
records. Note that n n ni i i1 1or . − in the above table can be null, as
responses in the two categories are mutually exclusive, but ni. ≠ 0.

Assume that a normal function has been used to describe the probabil-
ity of response for calving ease. Let y1 be the vector for observations for
the quantitative trait, such as birth weight, and y2 be the vector of the
underlying variable for calving difficulty. The model for trait 1 would be:

y X Z u e1 1 1 1 1 1= + +b [10.13]

and for the underlying variable for trait 2:

y X Z u e2 2 2 2 2 2= + +b [10.14]

where b1 and u1 are vectors of fixed effect and sire solutions for trait 1 and
X1 and Z1 are the usual incidence matrices. The matrices X2 and Z2 are
incidence matrices for the liability. The matrix Z Z2 1= and X X H2 1= ,
where H is an identity matrix if all factors affecting the quantitative traits
also affect the liability. However, if certain fixed effects affecting the
quantitative trait have no effect on the liability, H is obtained by deleting
the columns of an identity matrix of appropriate order corresponding to
such effects. It is assumed that:

var
e
e

R R
R R

1

2

11 12

21 22

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟

var
u
u

A G1

2

⎛
⎝
⎜

⎞
⎠
⎟ = ⊗ [10.15]

where G is the genetic covariance matrix for both traits and A is the
numerator relationship matrix.

Let ′ =q b t[ , , , ]1 1u v , the vector of location parameters in [10.13] and
[10.14] to be estimated, where t b b= −2 1bH and v u u= −2 1b , where b is
the residual regression coefficient of the underlying variate on the quanti-
tative trait. The calculation of b is illustrated in the subsequent section.
Since the residual variance of liability is unity, the use of b is necessary to
properly adjust the underlying variate for the effect of the residual
covariance between both traits. The use of b can be thought as correcting
calving difficulty for other ‘risk’ factors affecting calving and, in this
example, the birth weight of the calf. Thus [10.15] may be written as:

var
u
u u

u
v

A G1

2 1

1

−
⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟ = ⊗

b
c

where:

G
I 0

I I
I I
0 I

c
b

g gg

g gg

b
=

−
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

−⎛
⎝
⎜

⎞
⎠
⎟

11 12

21 22
[10.16]

with gij being the elements of G.
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Using a Bayesian approach, Foulley et al. (1983) calculated the mode
of the posterior density of q by equating the derivatives of the log-
posterior density of q to zero. The resulting systems of equations were not
linear in q. They set up the following iterative system of equations for q to
be estimated:

′ ′
′ ′ +

− −

− − − −

X R X X R Z 0 0
Z R X Z R Z A g 0 A

1 1
1

1 1 1
1

1

1 1
1

1 1 1
1

1
1 11 1

c g
0 0 X W X X W Z
0 A g Z W X Z

[ ] [ ]

[ ]

c

i i

c
i

12

2
1

2 2
1

2
1 21

2
1

2 2

′ ′
′ ′

− −

− − W Z A g

u

v[ ]

[ ]

[ ]

[ ]

[ ]i
c

i

i

i

i− −+

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝1
2

1 22

$

$

b

Dt

D

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

′
′
′
′

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−

−

−

−

−

X R y
Z R y
X q
Z q

[ ]

[ ]

1 1
1

1

1 1
1

1

2
1

2
1

i

i

0
A g v
0
A g v

[ ]

[ ]

− −

− −

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 12 1

1 22 1

c
i

c
i

[10.17]

The matrices and vectors in [10.17] have been defined earlier, apart from
q and W.

Initially, Pjk, the probability of response in the category k, given the
conditions in the jth row, is defined for the category trait. With only two
categories of response for calving difficulty, then from [10.5]:

P t a P Pj j j j1 2 11= − = −F( ) and

with aj regarded as the mean of the liability in the jth row or as defined in
[10.5].

However with only one threshold, the value of t by itself is of no inter-
est; the probability of response in the first category for the jth row can
then be written as:

P t aj j j1 = − =F F( ) ( )m

where mj can be defined as the expectation of y 2j given b, u and y 1j , and
this is worked out in the next section.

The vector q is of order s by 1 with elements:

qj j j j j jn d n n d j s= − + − ={ ( ) }, , ,.1 1 1 2 1 K [10.18]

where d Pj j j1 1= −f m( ) / and d Pj j j2 11= −fm /( ), with Pj1 calculated as
F( )mj .

W is an s by s diagonal matrix with the following elements:

w q n d n n d j sjj j j j j j j j= + + − =m 1 1
2

1 2
2 1( ) , , ,. K [10.19]

Calculating m and the residual regression coefficient

From [10.14], the model for the jth row of the contingency table may be
written as:

y x z u e2 2 2 2 2 2j j j j= ′ + ′ +b

where ′x 2j and ′z2j are the jth row vectors of X2 and Z2, respectively.
Similarly, observations for trait 1, corresponding to the jth row of
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the contingency table, may be modelled as:

y x z u e1 1 1 1 1 1j j j j= ′ + ′ +b

Let mj be the expectation of y 2j given b, andu y 1j . Thus:

mj j j j j j je e= = ′ + ′ +E( | , , , , ) ( | )y u u y x z u2 1 2 1 2 1 2 2 2 2 2 1b b b E [10.20]

given that e j2 is only correlated with e j1 . Assuming e j2 and e j1 are
bivariately normally distributed:

E( | ) ( )( , )e e ej j
e

e
j2 1

2 1

1
2 1= s

s

= ⎛
⎝⎜

⎞
⎠⎟

r ee

e
ij12

2

1
1

s

s
[10.21]

where s ei
2 is the residual variance of trait i, s ei k, , and rik are the residual

covariance and correlation between traits i and k, and s ei is the residual
standard deviation of the ith trait. Similarly:

var( | , , , ) var( | )y ,2 1 2 1 2 1 2 1j j j je eb b u u y =
= −s e r2

2
12
21( )

Since the unit of the conditional distribution of the underlying trait, given
b1,b2, u1, u2, and y1j, is the standard deviation, then from the above equation,
s e r2 12

21 1= −/ ( ). Therefore [10.21] can be written as:

E( | )e e r
r

ej j
e

j2 1 12
1 12

2
1

1 1

1
= ⎛

⎝⎜
⎞
⎠⎟ −s

= be j1 [10.22]

In general [10.20] can be expressed as:

m b= + +X Z u e2 2 2 2 1b

= + + − −X Z u y X Z u2 2 2 2 1 1 1 1 1b bb( ) [10.23]

The above equation may be written as:

m b b= − + − +X H Z u u y2 2 1 2 2 1 1( ) ( ) *b b b

m t= + +X Z v y2 2 1b * [10.24]

with the solutions of factors affecting calving difficulty corrected for the
residual relationship between the two traits and y y X Z u1 1 1 1 1 1

* ( )= − −b
or y 1

* may be calculated as y y1 1 1
* ( )= − y , where y 1 is the mean of y1.
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10.2.2 Numerical application

Example 10.2
The bivariate analysis of a quantitative trait and a binary trait is illustrated
using the data presented by Foulley et al. (1983), but with a sire–maternal
grandsire relationship matrix included for the sires and pelvic opening
omitted from the analysis. The data consisted of birth weight (BW) and
calving difficulty (CD) on 47 Blonde d’Aquitaine heifers, with informa-
tion on region of origin, sire of the heifer, calving season and sex of the
calf included. Calving difficulty was summarized into two categories:
easy or difficult calving. The data set is presented below:

Heifer
origin Sire Season

Sex of
calfa BW CDb

Heifer
origin Sire Season

Sex of
calfa BW CDb

1 1 1 1 41.0 E 1 4 2 1 47.0 D

1 1 1 1 37.5 E 1 4 2 2 51.0 D

1 1 1 2 41.5 E 1 4 2 2 39.0 E

1 1 2 2 40.0 E 2 4 1 1 44.5 E

1 1 2 2 43.0 E 1 5 1 1 40.5 E

1 1 2 2 42.0 E 1 5 1 2 43.5 E

1 1 2 2 35.0 E 1 5 2 1 42.5 E

2 1 1 2 46.0 E 1 5 2 1 48.8 D

2 1 1 2 40.5 E 1 5 2 1 38.5 E

2 1 2 2 39.0 E 1 5 2 1 52.0 E

1 2 1 1 41.4 E 1 5 2 2 48.0 E

1 2 1 1 43.0 D 2 5 1 2 41.0 E

1 2 2 2 34.0 E 2 5 1 1 50.5 D

1 2 2 1 47.0 D 2 5 2 1 43.7 D

1 2 2 1 42.0 E 2 5 2 1 51.0 D

2 2 2 1 44.5 E 1 6 1 2 51.6 D

2 2 2 1 49.0 E 1 6 1 1 45.3 D

1 3 1 1 41.6 E 1 6 1 2 36.5 E

2 3 1 1 36.0 E 1 6 2 1 50.5 E

2 3 1 2 42.7 E 1 6 2 1 46.0 D

2 3 2 2 32.5 E 1 6 2 1 45.0 E

2 3 2 2 44.4 E 1 6 2 2 36.0 E

2 3 2 1 46.0 E 2 6 1 2 43.5 E

2 6 1 2 36.5 E

a 1, male; 2, female.
b CD, calving difficulty; D, difficult, E, easy.
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A summary of the data, in terms of marginal means of calving vari-
ables by level of factors considered, is shown in the following table:

Factor Number Birth weight
Frequency

CDa

Heifer origin 1 30 43.02 0.267
2 17 43.02 0.176

Calving season 1 20 42.23 0.200
2 27 43.61 0.259

Sex of calf M 25 – 0.360
F 22 – 0.091

Sire of heifer 1 10 40.55 0.000
2 7 42.99 0.286
3 6 40.53 0.000
4 4 45.38 0.500
5 11 45.46 0.364
6 9 43.43 0.333

a Frequency of calving difficulty.

The following sire–maternal grandsire relationship matrix was
assumed among the sires:

Bull Sire Maternal grandsire

1 0 0
2 0 0
3 1 0
4 2 1
5 3 2
6 2 3

The inverse of the sire–maternal grandsire relationship matrix obtained
for the above pedigree using the rules in Section 2.4 is:

A − =

− −

1

1424 0182 0667 0364 0000 0000
0182 1818 036
. . . . . .
. . . 4 0727 0364 0727

0667 0364 1788 0000 0727 03
− − −

− − −
. . .

. . . . . . 64
0364 0727 0000 1455 0000 0000
0000 0364 072

− −
− −

. . . . . .

. . . 7 0000 1455 0000
0000 0727 0364 0000 0000 1455

. . .
. . . . . .− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

The residual variance ( )s e 1
2 for BW was assumed to be 20 kg2 and the

residual correlation (r12) between BW and CD was assumed to be 0.459.
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Therefore, from [10.20], b equals 0.1155. The matrix G assumed was:

G = ⎛
⎝
⎜

⎞
⎠
⎟

07178 01131
01131 00466
. .
. .

Therefore, from [10.16]:

G c =
−

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

1 0
01155 1

07178 01131
01131 00466

1
.

. .

. .
−⎛

⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟

01155
0 1

07178 00302
00302 00300

. . .
. .

Thus the heritabilities for BW and CD are 0.14 and 0.18, respectively,
with a genetic correlation of 0.62 between both traits.

The model [10.13] was used for the analysis of BW; thus b1 is the vec-
tor of solutions for origin of heifer, calving season and sex of calf and u1 is
the vector of solution for sire effects. The same effects were fitted for CD,
with t being the vector of solutions for the fixed effects and v for the sire
effects. Let q be a vector with elements:

′ =b1 1 2 1 2 1 2( , , , , , )d d s s f f

′ =u 1 11 12 13 14 15 16( $ , $ , $ , $ , $ , $ )u u u u u u

′ = ′ ′ ′ ′ ′ ′t ( , , , , , )d d s s f f1 2 1 2 1 2

′ =v ( , , , , , )v v v v v v1 2 3 4 5 6

where d di i( )′ , s si i( )′ and f fi i( )′ are level i of the effects of heifer origin,
calving season and sex of calf, respectively, for BW(CD), $u j1 and vj are the
solutions for the sire j for BW and CD, respectively.

The matrix X1, which relates records for BW to the effects of heifer
origin, calving season and sex of calf, can be set by principles already out-
lined in previous chapters. For the example data, all fixed effects affecting
BW also affect CD; therefore H is an identity matrix and X X2 1= . Simi-
larly, the matrix Z Z1 2= . The remaining matrix in [10.17] can be obtained
through matrix multiplication and addition.

Equation [10.17] needs starting values for t and v to commence the
iterative process. The starting values used were solutions (t(i) and v(i))
from [10.17] with W[i−1] = I, q[i−1] � a vector of (0,1) variables (1, difficulty;
0, otherwise) and v[i−1] = 0. The solutions to [10.17] using these starting
values are shown in Table 10.3, with equations for the second levels of
calving season and sex of calf effects set to zero because of dependency in
the systems of equations. Using these solutions, the calculations of q( )i

and W( )i , in the next round of iteration are illustrated for the first and last
two animals in the example data.

First, m in [10.18] is calculated for these animals using [10.24].
For animals 1 and 2:

X Z v2 2 1 1 1 1 01873 00874 02756t + = ′ + ′ + ′ + = + − +( $ $ ) . ( . ) .d s f v + −
=

( . )
.

01180
02575

230 Chapter 10
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Therefore, from [10.24], using the mean of the birth weight, m1 is:

m1 02575 01155 41 4302 00242= + − =. . ( . ) .

and:

m2 02575 01155 375 4302 03800= + − = −. . ( . . ) .

For animals 46 and 47:

X Z v2 2 2 1 2 6 01484 00874 00 0t + = ′ + ′ + ′ + = + − + +( $ $ ) . ( . ) . .d s f v 0079
00690= .

Therefore, from [10.24]:

m46 00690 01155 435 4302 01244= + − =. . ( . . ) .

and:

m47 00690 01155 365 4302 06841= + − = −. . ( . . ) .

Using [10.18], the elements of q for animals 1, 2, 46 and 47 are:

q( ) { ( ) ( . )/ ( . ) ( )( ( . )/(1 0 1 00242 00242 1 0 00242 1= − − + −f fF − F( . ))}00242

= − − + = −{ ( ) . / . ( . / . )} .0 103988 05097 1 03988 04903 08134

q( ) { ( ) ( . )/ ( . ) ( )( ( . )2 0 1 03800 03800 1 0 03800= − − − − + − −f fF /( ( . ))}1 03800− −F

= − − + = −{ ( ) . / . ( . / . )} .0 103712 03520 1 03712 06480 05727

q( ) { ( ) ( . )/ ( . ) ( )( ( . )/(46 0 1 01244 01244 1 0 01244= − − + −f fF 1 01244− F( . ))}

= − − + = −{ ( ) . / . ( . / . )} .0 103959 05495 1 03959 04505 08787

q( ) { ( ) ( . )/ ( . ) ( )( ( .47 0 1 06841 06841 1 0 06841= − − − − + − −f fF )/( ( . ))}1 06841− −F

= − − + = −{ ( ) . / . ( . / . )} .0 103157 02470 1 03157 07530 04193

The diagonal elements of W for each of the four animals above can be
calculated, using [10.19], as:

w( , ) . ( . ){ ( )[ ( . )/ ( . )]11 00242 08134 0 1 00242 00242 2= − − f F

+ − − − =( )[( ( . )/( ( . ))] } .1 0 00242 1 00242 064192f F

w( , ) . ( . ){ ( )[ ( . )/ ( .22 03800 05727 0 1 03800 03800= − − − − −f F )]

( )[( ( . )/( ( . ))] } .

2

21 0 03800 1 03800 05458+ − − − − =f F

w( , ) . ( . ){ ( )[ ( . )/ ( . )46 46 01244 08787 0 1 01244 01244= − − f F ]

( )[( ( . )/( ( . ))] } .

2

21 0 01244 1 01244 06629+ − − =f F

w( , ) . ( . ){ ( )[ ( . )/ ( .47 47 06841 04193 0 1 06841 068= − − − − −f F 41

1 0 06841 1 06841 04626

2

2

)]

( )[( ( . )/( ( . ))] } .+ − − − − =f F

The equations were solved iteratively and were said to have converged at
the 13th round of iteration when ′ ≤ −D D/ ,20 10 7 where D = − −q q( ) ( )i i 1 .
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Solutions at convergence at the 13th round of iteration and at some inter-
mediate rounds are shown in Table 10.3. Results from an analysis using a
linear model fitting the same effects with the G matrix and residual vari-
ances of 20 2kg for BW, 1.036 for CD and residual covariance of 2.089
between the two traits are also presented.

The results indicate that the probability of a difficult calving is larger
for a male calf than for a female calf. Similarly, there is a slightly higher
probability for calving difficulty for calving in the first season.

232 Chapter 10

Iteration number
Linear

Traita Factor 0 1 4 8 13 model

BW Heifer origin
1 41.6633 41.5471 41.6262 41.6182 41.6195 41.6175
2 42.2530 42.1409 42.2178 42.2099 42.2112 42.2022

Calving season
1 −1.2350 −1.2345 −1.2346 −1.2343 −1.2344 −1.2387
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sex of calf b

1 3.1589 3.1890 3.1687 3.1690 3.1690 3.1845
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sire
1 −0.4155 −0.2633 −0.3671 −0.3580 −0.3595 −0.3268
2 0.1048 0.1687 0.1246 0.1311 0.1300 0.1171
3 −0.3315 −0.2280 −0.3007 −0.2939 −0.2950 −0.2641
4 0.1364 0.3365 0.2035 0.2139 0.2122 0.1886
5 0.2730 0.3261 0.2893 0.2979 0.2965 0.2688
6 0.1545 0.2270 0.1770 0.1821 0.1813 0.1690

CD Heifer origin
1 0.1873 −1.0189 −1.4072 −1.3915 −1.3943 0.1349
2 0.1484 −1.2813 −1.7342 −1.7472 −1.7452 0.0876

Calving season
1 −0.0874 0.1871 0.1327 0.1415 0.1401 −0.0311
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sex of calf
1 0.2756 0.3218 0.8621 0.8369 0.8411 0.2410
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sire
1 −0.1180 0.0471 −0.0656 −0.0561 −0.0577 −0.0527
2 0.0144 0.0705 0.0319 0.0379 0.0369 0.0285
3 −0.0850 0.0185 −0.0546 −0.0477 −0.0488 −0.0427
4 −0.0380 0.1698 0.0319 0.0424 0.0407 0.0350
5 −0.0048 0.0362 0.0075 0.0163 0.0148 0.0195
6 0.0079 0.0702 0.0270 0.0315 0.0308 0.0323

a BW, birth weight; CD, calving difficulty.
b1, male; 2, female.

Table 10.3. Solutions to Example 10.2 using equation [10.17].
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In general, sire rankings from the threshold and linear models were
similar, except for sires 2 and 6 slightly changing rankings in the two
models. The ranking of sires for calving difficulty based on the results
from the threshold model could be based on û2 = v + b1û1 using the infor-
mation provided by BW. However, the interest might be on ranking sires
in terms of probability of calving difficulty, under a given set of condi-
tions. For instance, what is the probability that a heifer, sired by the jth
bull born in region 2, calving a male calf in season 1 will experience a
calving difficulty? This probability ( )V j211 can be calculated as:

V d s f v b d s fj j211 2 1 1 1 2 1 1 4302= ′ + ′ + ′ + + + + −F[ $ $ $ $ ( $ $ $ . )] [10.25]

Using the above equation, this probability for sire 1 is:

V j211 17452 01401 08411 00577

01155 42

= − + + + −
+

F[ . . . ( . )

. ( .2112 12344 31690 4302 0245+ − + − =( . ) . . )] .

Similar calculations gave probabilities of 0.275, 0.247, 0.276, 0.268 and
0.273 for sires 2, 3, 4, 5 and 6, respectively. In general, there might be
interest in the probability of difficult calving associated with using the jth
sire across all regions of origin by season of calving and sex of calf sub-
classes. Such a probability can be calculated as:

V Vj ikl iklj
ikl

K = ∑ l [10.26]

with Viklj estimated as [10.25] and likl is an arbitrary weight such that
S ikl ikll = 1. For the example data, l can be set to be equal to 1

8, as there are
eight region–season–sex of calf subclasses. The probabilities obtained
using [10.26] with l = 1

8 were 0.167, 0.188, 0.169, 0.189, 0.183 and 0.187
for sires 1, 2, 3, 4, 5 and 6, respectively.

The analysis of a binary trait with a quantitative trait has been dis-
cussed and illustrated in this section. However, if the category trait has
several thresholds, then the method discussed in Section 10.1 would be
used for the analysis of the categorical trait.

Analysis of Ordered Categorical Traits 233

247
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:25:24 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



11 Estimation of Genetic Parameters

ROBIN THOMPSON

Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK and
Roslin Institute, Roslin Biocentre, Midlothian EH25 9PS, UK

In order to carry out prediction of breeding values, estimates of variance
components are normally needed. In this chapter the estimation of vari-
ance parameters is considered using univariate sire and animal models.

11.1 Univariate Sire Model

To motivate this work, the mixed effect sire model introduced in Chapter 3
is used.This model [3.15] has:

y Xb Zs e= + +

and:

var( )s A= s s
2

var( )y ZAZ R= ′ +s s
2

where A is the numerator relationship matrix for sires, s ss a
2 2025= . and

R I= s e
2. Interest is in estimating s s

2 and s e
2. The simple case with this sire

model is with X being an n × 1 matrix with elements 1, b having one
element representing an overall effect and the q sires being unrelated, so
that A = I.

An analysis of variance can be constructed by fitting: (i) a model with
the overall effect b; and (ii) a model with sire effects, these models giving
residual sums of squares that can be put into an analysis of variance

© CAB International 2005. Linear Models for the Prediction of Animal Breeding Values,
2nd Edition (R.A. Mrode) 235
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of the following form:

Source Degrees of freedom Sums of squares

Overall Rank (X) = 1 y�X(X�X)−1X�y = F
Sires Rank (Z) − rank (X) = q − 1 y�Z(Z�Z)−1Z�y − y�X(X�X)−1X�y = S
Residual n − rank (Z) = n − q y�y − y Z(Z Z)−1Z�y = R

Essentially, the effects b and s are thought of as fixed effects to construct
an unweighted analysis. If estimates of s s

2 and s e
2 are required, then the

sums of squares S and R can be equated to their expectation E(R) = −( )n q es 2

and E(S) trace= − + ′( ) ( )q e s1 2 2s sZ SZ , where S I X X X X= − ′ ′−( ) 1 .

11.2 Numerical Example of Sire Model

Consider the data in Table 11.1 for the pre-weaning gain (WWG) of beef
calves. The objective is to illustrate the estimation of variance compo-
nents on a very small example so that the calculations can be expressed
concisely.

The model to describe the observations is:
y o s eij j i= + +

where y ij = the WWG of the ith calf, o = the overall effect, s j = random
effect of the jth sire ( , , ),j = 1 2 3 and ei = random error effect (i = 1, 2, 3, 4).

In matrix notation, the model is the same as described in equation
[3.15], with n p q= = =4 1 3, and .

The matrix X in the mixed model equations (MME) relates records to
the overall effects. For the example data set, its transpose is:

′ =X [ ]1 1 1 1 1
The matrix Z then relates records to sires. In this case, it is:

Z =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 1 0
1 0 0
0 0 1
0 1 0

236 Chapter 11

Calf Sire WWG (kg)

4 2 2.9
5 1 4.0
6 3 3.5
7 2 3.5

Table 11.1. Pre-weaning gain (kg) for four beef calves.
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An analysis of variance can be constructed as:

Source Degrees of freedom Sums of squares (kg2)

Overall 1 F = 48.3025
Sire 2 S = 0.6075
Residual 1 R = 0.1800

with:

′ ′ ′ = = + + + =−y X X X X y( ) ( . . . ) / .1 229 4 35 35 4 483025F

′ ′ ′ − ′ ′ ′ = = + + +− −y Z Z Z Z y y X X X X y( ) ( ) ( ) / ( . . ) /1 1 2 24 1 29 35 2S ( . ) /35 12

− =483085 06075. .

′ − ′ ′ ′ = = + + + − − =−y y y Z Z Z Z y( ) ( . ) ( ) ( . ) ( . )1 2 2 2 229 4 35 35R F S 018.

In this case:

Z =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 1 0
1 0 0
0 0 1
0 1 0

S =

− − −
− − −
− −

075 025 025 025
025 075 025 025
025 025

. . . .

. . . .

. . 075 025
025 025 025 075

0

. .
. . . .

.

−
− − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

′ =and Z SZ
75 050 025

050 100 025
025 050 075

− −
− −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

. .
. . .
. . .

so that:

E(R) = =s e
2 018. and E(S) = + =2 25 060752 2s se s. .

Then estimates of s e
2 and s s

2 are:

s e
2 018= . (kg )2 and s s

2 0027= . (kg )2

11.3 Extended Model

The model and analysis hold if the model is extended to allow X to repre-
sent an environmental effect with p levels. If sires are nested within levels
of the environmental factor so that daughters of each sire are only

Estimation of Genetic Parameters 237
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associated with one level of the environmental factor, then the above
analysis could be used. If, however, as usually happens, daughters of a
sire are associated with more than one level, a slightly more complicated
analysis is appropriate:

Source Degrees of freedom Sums of squares

Fixed effects Rank (X) = p y�X(X�X)−1X�y = F
Sires corrected for
fixed effects

Rank (Z�SZ) = dfS y�SZ(Z�SZ)−1Z�Sy = S

Residual n − rank (X) − rank (Z�SZ)
= n − p − dfS = dfR

y�y − F − S = R

Now R and S have expectation:

E(R) = dfR es 2 and E(S) trace= + ′dfS e ss s2 2( )Z SZ

The term involved in the trace (Z¢SZ) can sometimes have a simple inter-
pretation. If X represents a fixed effect matrix with p levels then the ith
diagonal element of Z¢SZ is n n ni ij j. ./− S 2 (summation is from j = 1 to p),
where nij is the number of daughters of sire i in fixed effect level j and
n ni ij. = S (summation is from j = 1 to p) and n ni ij. = S (summation is from
i = 1 to s). This number was called the effective number of daughters of
sire i by Robertson and Rendel (1954) and measures the loss of informa-
tion on a sire because his daughters are measured in different environ-
mental classes. This method of analysis is called Henderson’s method 3
(Henderson, 1953). These methods of analysis were very popular in that
they related to sequential fitting of models and were relatively easy to
compute. One problem was that the terms are generated under a fixed
effect model with V I= s e

2 and then sums of squares are equated to their
expectation under a different variance model. Only in special balanced
cases will estimation based on R and S lead to efficient estimates of s s

2

and s e
2. In general, B is based on Z¢Sy with variance matrix ′ +Z SZs e

2

′ ′Z SZAZ SZs s
2and these can be transformed to dfS independent values

Q¢Z¢Sy by using arguments similar to those used in Section 5.2 on the
canonical transformation, where Q is a dfS n matrix and Q¢Z¢SZQ = I, and
Q¢Z¢SZAZ¢SZQ = W, where W is a diagonal matrix of size dfS with ith
diagonal element wi. The variance matrix of Q¢Z¢Sy is then I Ws se s

2 2+ .
Then an analysis of variance can be constructed from squaring each of the
dfS elements of Q¢Z¢Sy with the ith sum of squares ui with expectation
s se i sw2 2+ and R is the residual sum of squares, with expectation
E(R) = dfR es 2. The individual ui are distributed as chi-squared variables
with variance E(ui)2. A natural scheme is to fit a linear model in s s

2 and s e
2

to ui and R. One can also use an iterative scheme with the weight depend-
ent on the estimated parameters.

238 Chapter 11
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11.4 Numerical Example

For the example with data in Table 11.1, it was shown in Section 11.2 that:

′ =
− −

− −
− −

⎡

⎣

⎢Z SZ
075 050 025
050 100 025
025 050 075

. . .

. . .

. . .
⎢
⎢

⎤

⎦

⎥
⎥
⎥

so that the sires have 0.75, 1.0 and 0.75 effective daughters, respectively.
It can be found that with A = I:

′ ′ =
− −

− −
−

Z SZAZ SZ
0875 0750 0125
0750 1500 0750
0125

. . .

. . .

. −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥0750 0875. .

The algorithm in Appendix E can be used to calculate the eigenvalues Q
so that:

′ ′ = ′ ′ ′ =Q Z SZQ I Q Z SZAZ SZQ Wand
In this case:

Q =
− −

−
⎡

⎣
⎢

⎤

⎦
⎥

03333 06667 03333
07071 00000 07071
. . .
. . .

So ′ ′ = ′ ′ ′ =Q Z SZQ I Q Z SZAZ SZQ Wand with:

W = ⎡

⎣
⎢

⎤

⎦
⎥

15 00
00 10
. .
. .

The contrasts Q¢Z¢Sy are now:

′ ′ =
− −

−
Q Z S

05000 05000 05000 05000
00000 07071 0707
. . . .
. . . 1 00000.

⎡

⎣
⎢

⎤

⎦
⎥y

The first contrast, (y1 − y2 − y3 + y4)/2 = (2.9 − 4.0 − 3.5 + 3.5)/2 = −1.1/2 =
−0.55, is a scaled contrast comparing sire 2 with sire 1 and sire 3, and the
second contrast, ( )/ ( . . )/ ( . )/y y2 3 2 40 35 2 05 2− = − + = − , is a scaled con-
trast between sire 1 and sire 3.

An analysis of variance can be constructed:

Source
Degrees of

freedom
Sums of squares

(kg2)
Expected mean
squares (kg2)

Overall 1 F = 48.3085
Sire 2 compared
with sires 1 and 3

1 (−0.55)2 = 0.3025 s se s
2 215+ .

Sire 1 compared
with sire 3

1 (−0.5)2/2 = 0.1250 s se s
2 2+

Residual 1 R = 0.1800 se
2

Estimation of Genetic Parameters 239
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Fitting a linear model in s e
2 and s s

2 to the three sums of squares, 0.3025,
0.1250 and 0.1800, gives estimates of s e

2 0413= . (kg )2 and s s
2 = 0079. (kg )2 .

If a generalized linear model is fitted iteratively to the sum of squares with
weights proportional to the variance of the sum of squares when the proce-
dure converges, the estimate of s e

2 is 0.163 (kg2) and s s
2 is 0.047 (kg2). The

estimated variances of these estimates (from the inverse of the generalized
least-squares coefficient matrix) are 0.216 (kg2) and 0.234 (kg2).

11.5 Animal Model

It has been shown that estimates can be obtained from analysis of variance
for some models. Now consider a more general model, the animal model
introduced in Chapter 3. This linear model [3.1] is:

y Xb Za e= + +

and the variance structure is defined, with:

var( )e I R= =s e
2 ; var( )a A G= =s a

2 and cov( , ) cov( , )a e e a= = 0

where A is the numerator relationship matrix, and there is interest in esti-
mating s a

2 and s e
2. A popular method of estimation is by residual maxi-

mum likelihood (REML) (Patterson and Thompson, 1971). This is based
on a log-likelihood of the form:

L logdet( ) logdet( )}a( ){ ( ) ( )1
2

1 1− − ′ − − − ′− −y Xb V y Xb V X V X

where b is the generalized least-square solution (GLS) and satisfies:

′ = ′− −X V Xb X V y1 1

There are three terms in L: the first is a weighted sum of squares of residu-
als, the second a term that depends on the variance matrix and a third that
depends on the variance matrix of the fixed effects and can be thought of
as a penalty because fixed effects are estimated. Mixed model equations
(Chapter 3) play an important part in the analysis process.

For the particular model, these can be written as [3.4]:

′ ′
′ ′ +

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′
′

⎡

⎣
⎢

⎤

⎦
⎥−

X X X Z
Z X Z Z A

b
a

X y
Z y1a

$

$

with a = s se a h h2 2 2 21/ ( )/or − .
Extensive use of the prediction error variance matrix of a is made. In

this case the prediction error variance matrix is PEV = − =var( $ )a a C22 2s e
[3.14], where C22 is associated with the coefficient matrix of the mixed
model equations.

Estimates of s a
2 and s e

2 are chosen to maximize L. It is useful to
express relevant terms in this estimation process in terms of the projec-
tion matrix P:

P V X X V X X V= − ′ ′− − − −1 1 1 1( )

240 Chapter 11
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Then:

L logdet( ) logdet( )}a( ){1
2

1− ′ − − ′ −y Py V X V X [11.1]

Estimation of a variance parameter q q q1i e a( , )= s = s2
2

2 involves setting
to zero the first derivatives:

∂ ∂ ∂ ∂ ∂ ∂L trace[ (/ ( ){ ( / ) / )]}q q qi i i= ′ −1
2 y P V Py P V

These equations could be thought of as equating a function of data (the
first term in the expression) to its expectation.

Normally, finding a maximum requires an iterative scheme. One
suggested by Patterson and Thompson (1971) was based on using the
expected value of the second differential matrix. In this case these are:

E( L trace[ ( (∂ ∂ ∂ ∂ ∂ ∂ ∂2 1
2/ ) ( ) / ) / )]q q q qi j i j= − P V P V

Using the first and expected second differentials one can update q
using terms that depend on the solution of the mixed model equations and
prediction error variances. For the particular animal model that is being
considered, then:

∂ ∂L/ ( ){( ) ( )/ ( )/s s se e en p q2 1
2

4 2= − − ′ − − − − −y Xb Za y Xb Za

− −C Atrace[ 22 1 2]/ }s a [11.2]

∂ ∂L trace[/ ( ){ / / ] /s s s s sa a a e aq2 1
2

1 4 2 22 1 2 4= ′ + −− −a A a C A } [11.3]

and:

E( L trace[(2∂ ∂/ ) ( ){( )/ ) ]/s s se e an p q4 1
2

4 22 1 2 4= − − − + −C A }

E( L trace[{2∂ ∂/ ) ( ){ ( / )} ]/ }s s s sa e a a
4 1

2
22 1 2 2 2 4= − − −I C A

E( L trace[{2∂ ∂ ∂/ ) ( ){ ( / )}{s s s sa e e a
2 2 1

2
22 1 2 2 2= − − −I C A C 2 1 4A − }] }s a

Thinking of the variance parameters and the first differentials as vectors
q and ∂ ∂L/ q with ith (i = 1, 2) element qi and ∂ ∂L/ q i , respectively, and
Einf, the expected information matrix, a matrix with i,jth element
−E( L2∂ ∂ ∂/ )q qi j , suggests an iterative scheme, with the new estimate qn

satisfying:

q q qn = + −Einf L1( / )∂ ∂ [11.4]

There are two problems with this approach. First, the parameters
might go negative and one would want estimates of variances to stay
essentially positive. One popular way of avoiding this property is to note
that at a maximum of the likelihood the first differentials are zero and to
manipulate equations [11.1] and [11.2] in the form:

( ) ( ) ( )n p e− = − − ′s 2 y Xb Za y [11.5]

q a es s2 1 22 1 2= ′ +− −a A a C Atrace[ ] [11.6]

so that it can be seen that s e
2 is estimated from a sum of squares of residu-

als and s a
2 is estimated from a weighted sum of squares of predicted val-

ues and their prediction error variance. This algorithm is an EM algorithm
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(Dempster et al., 1977) and successive iterates are positive. The algorithm
can be written in the form of the updating formula if Einf is replaced by a
matrix that depends on the information derived, as if one could directly
observe the residuals and breeding values rather than predicting them.
This algorithm can be slow to converge in animal breeding applications.

A second problem is that the expected second differentials are diffi-
cult to calculate. Sometimes it is recommended to use observed second
differentials. These are of the form:

( L ( (∂ ∂ ∂ ∂ ∂ ∂ ∂2/ ) / ) / )q q q qi j i j= − ′y P V P V Py
+ ( ) / ) / )]1

2 trace[ ( (P V P V∂ ∂ ∂ ∂q qi j

but again these terms involve the complicated trace terms. One suggestion
(Gilmour et al., 1995) is to use the average of the expected and observed
information terms. These are of the form:

A( L ( (∂ ∂ ∂ ∂ ∂ ∂ ∂2 1
2/ ) ( ){ / ) / ) }q q q qi j i j= − ′y P V P V Py

These terms are similar to y Py′ in that they could be thought of as a
weighted sum of squares matrix with y replaced by two columns
( ( = 1,2)∂ ∂V Py/ )q i i . In this particular case:

(∂ ∂V Py y Xb Za/ ) ( )/s se e
2 2= − −

and:
(∂ ∂V Py Za/ ) /s sa a

2 2=
As in the formation of Einf, we can construct and base an iterative

scheme using [11.3] and on Ainf, a matrix with elements −A( L∂ ∂ ∂2/ )q qi j .
Once the iterative scheme has converged, then the asymptotic variance
matrix of q can be estimated from Ainf −1 or Einf −1. The animal model and
estimation procedure introduced can easily be extended to deal with
other models, just as prediction procedures can be developed for a variety
of models. Software for estimating variance parameters using this average
information algorithm is described by Jensen and Madsen (1997) and
Gilmour et al. (2003).

11.6 Numerical Example

Consider the data in Table 11.2 for the pre-weaning gain (WWG) of beef
calves. This is very similar to the data of Table 3.1, with the data changed
to give positive variance estimates.

The model to describe the observations is:
y p a eijk i j ijk= + +

where yij = the WWG of the jth calf of the ith sex, pi = the effect of the ith
sex, aj = the random effect of the jth calf, and eijk = random error effect.

In matrix notation the model is the same as described in equation [3.1].
Again, the objective is to illustrate the estimation of variance compo-

nents s e
2 and s a

2 on a very small example so that the calculations can be
expressed concisely.
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In matrix notation the model is the same as described in equation [3.1],
with n = 5, p = 2 and q = 8, with the design matrices as given in Section
3.2. Now y¢ = [2.6, 0.1, 1.0, 3.0, 1.0] and, using initial estimates of s e

2 04= .
and s a

2 02= . , solutions to mixed model equations [3.15] are:

Effects Solutions

Sexa

1 2.144
2 0.602

Animal
1 0.117
2 −0.025
3 −0.222
4 −0.254
5 −0.135
6 0.032
7 0.219
8 −0.305

a1 = male, 2 = female.

Then:
( ) [ . . . . . ]y Xb Za− − ′ = − −02022 03661 03661 06374 08395

C22 2

01884 00028 00131 00878 00180 00883 00554 0

s e =

. . . . . . . .

. . . . . . . .
0537

00028 01968 00041 00082 00949 00981 00479 0− 0443
00131 00041 01826 00193 00805 00090 00504 00. . . . . . . .− 871
00878 00082 00193 01711 00188 00510 00971 0049. . . . . . . . 3
00180 00949 00805 00188 01712 00679 00879 00712
0
. . . . . . . .
. . . . . . . .
.
0883 00981 00090 00510 00679 01769 00609 00877

00554 00479 00504 00971 00879 00609 01767 00672
0053

. . . . . . .
. 7 00443 00871 00493 00712 00877 00672 01689. . . . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

y¢Py = 4.8193, logdet(V) = −2.6729 and logdet (X¢V−1X) = 2.6241, so L =
−2.3852 from [11.1].

Estimation of Genetic Parameters 243

Calf Sex Sire Dam WWG (kg)

4 Male 1 – 2.6
5 Female 3 2 0.1
6 Female 1 2 1.0
7 Male 4 5 3.0
8 Male 3 6 1.0

Table 11.2. Pre-weaning gain (kg) for five beef calves.
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Then [11.2] and [11.3] give:

∂ ∂L/ ( . ){( ) ( )/ ( )/s s se e en p q2 4 205= − − ′ − − − − −
−

y Xb Za y Xb Za

trace[C A22 1 2− ]/ }s a

∂ ∂L/ ( . ){ . ( . ) . } .s e
2 05 88753 125000 180733 16510= − − − =

∂ ∂L trace[/ ( . ){ / ] /s s s s sa a a e aq2 1 4 2 22 1 205= ′ − +− −a A a/ C A 4}
∂ ∂L/ ( . ){ . . . } .s a

2 05 63461 400000 361466 12464= − + =

and:

A L2( / ) ( . ){( ) ( )/ }∂ ∂s se e
4 405= − − − ′ − −y Xb Za P y Xb Za

A L2( / ) ( . ) . .∂ ∂s e
4 05 165346 82673= − = −

A L2( / ) ( . ){ }/∂ ∂s sa a
4 405= − ′ ′a Z PZa

A L2( / ) ( . ) . .∂ ∂s a
4 05 91163 45582= − = −

A L2( / ) ( . ){ ( )}/( )∂ ∂ ∂s s s sa e e a
2 2 2 405= − ′ ′ − −a Z P y Xb Za

A L2( / ) ( . ) . .∂ ∂ ∂s sa e
2 2 05 113070 56535= − = −

and:

Ainf Ainf= ⎡

⎣
⎢

⎤

⎦
⎥ =−82673 56535

56535 45582
07961. .

. .
.

so
7 09882

09882 14450
−

−
⎡

⎣
⎢

⎤

⎦
⎥

.
. .

Using [11.4] and replacing Einf by Ainf:

q q qn = + = ⎡

⎣
⎢

⎤

⎦
⎥ +

−
−

−Ainf L1 04
02

07967 09882
098

( / )
.
.

. .

.
∂ ∂

82 14450
16510
12464.
.
.

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥

= ⎡

⎣
⎢

⎤

⎦
⎥ + ⎡

⎣
⎢

⎤

⎦
⎥

04
02

00838
01695

.

.
.
.

so that new estimates of s e
2 and s a

2 are 0.4838 (kg2), and 0.3695 (kg2),
respectively.

Table 11.3 gives six successive iterates and log-likelihood for these data.

In the last iteration Ainf − =
−

−
⎡
⎣⎢

⎤
⎦⎥

1 24436 32532
32532 53481
. .
. .

, so that the estimate of

s e
2 is 0.4835 with standard error 24436 1563. .= and the estimate of s a

2 is
0.5514 with standard error 53481 2313. .= .

244 Chapter 11

Iterate se
2 (kg )2 sa

2 (kg )2 L

1 0.4000 0.2000 −2.3852
2 0.4838 0.3695 −2.2021
3 0.4910 0.5126 −2.1821
4 0.4839 0.5500 −2.1817
5 0.4835 0.5514 −2.1817
6 0.4835 0.5514 −2.1817

Table 11.3. Estimates of se
2 and sa

2 and L.
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In contrast, if estimates of s e
2 04= . and s a

2 02= . are used in conjunc-
tion with [11.5] and [11.6], then:

(n − p)s e
2 = (y − Xb − Za)′(y), so 3s e

2 = 1.9277, so s e
2 = 0.6426 (kg2) and q

s a
2 = a¢A−1a + trace[C22A−1]s e

2, so 8s a
2 = 0.2538 + 1.4458, so s a

2 = 0.2125
(kg2), with L = −2.3852. After 1000 iterations, the algorithm gives s e

2 =
0.4842 (kg2) and s a

2 05504= . (kg )2 , with L = −2.1817, showing that this
algorithm is slower to converge.
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12 Application of Gibbs Sampling in
Variance Component Estimation
and Prediction of Breeding Value

12.1 Introduction

Gibbs sampling is a numerical integration method and is one of several
Markov chain Monte Carlo (MCMC) methods. They involve drawing sam-
ples from specified distributions; hence they are called Monte Carlo and
are referred to as Markov chain because each sample depends on the pre-
vious sample. Specifically, Gibbs sampling involves generating random
drawings from marginal posterior distributions through iterative sam-
pling from the conditional posterior distributions. For instance, given that

′ =Q Q Q( , )1 2 and P(Q1, Q2) is the joint distribution of Q1 and Q2, Gibbs
sampling involves sampling from the full conditional posterior distribu-
tions of Q1, P(Q1|Q2) and Q2, P(Q2|Q1).

Thus, given that the joint posterior distribution is known to propor-
tionality, the conditional distributions can be generated. However, defin-
ing the joint density involves the use of Bayes’ theorem. In general, given
that the probability of two events occurring together, P(B,Y), is:

P(B,Y) = P(B)P(Y B| ) = P(Y)P(B Y| )

then:

P B Y P B P Y B P Y( | ) ( ) ( | )/ ( )= [12.1]

Equation [12.1] implies that inference about the variable B depends on the
prior probability of its occurrence, P(B). Given that observations on Y are
available, this prior probability is then updated to obtain the posterior
probability or density of B, (P(B Y| )). Equation [12.1] is commonly
expressed as:

P B Y P B P Y B( | ) ( ) ( | )∝ [12.2]

© R.A. Mrode 2005. Linear Models for the Prediction of Animal Breeding Values,
2nd Edition (R.A. Mrode) 247
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as the denominator is not a function of B. Therefore the posterior density
of B is proportional to the prior probability of B times the conditional dis-
tribution of Y given B. Assuming that B in [12.2] is replaced by W, a vector
of parameters, such that W¢ = (W1,W2,W3) and that the joint posterior dis-
tribution is known to proportionality (equation [12.2]), the full condi-
tional probabilities needed for the Gibbs sampler can be generated for
each parameter as P(W1|W2,W3,Y), P(W2|W1,W3,Y) and P(W3|W1,W2,Y).
Assuming starting valuesW W1

0
2

0[ ] [ ], and W3
0[ ], the implementation of the

Gibbs sampler involves iterating the following loop:

1. SampleW i
1

1[ ]+ from P W W W Yi i( | , , )[ ] [ ]
1 2 3

2. SampleW i
2

1[ ]+ from P W W W Yi i( | , , )[ ] [ ]
2 1

1
3

+

3. SampleW i
3

1[ ]+ from P W W W Yi i( | , , )[ ] [ ]
3 2

1
3

1+ +

Usually, the initial samples are discarded (the so-called burn-in period).
In summary, the application of the Gibbs sampler involves defining the
prior distributions and the joint posterior density and generating the full
conditional posterior distributions and sampling from the latter.

The Gibbs sampler was first implemented by Geman and Geman
(1984). In animal breeding, Wang et al. (1993, 1994) used Gibbs sampling
for variance component estimation in sire and animal models. It has been
implemented for the study of covariance components in models with
maternal effects (Jensen et al., 1994), in threshold models (Sorensen et al.,
1995) and in random regression models (Jamrozik and Schaeffer, 1997). It
has recently been employed for the purposes of variance component
estmation and breeding value prediction in linear-threshold models
(Heringstad et al., 2002; Wang et al., 2002). Detailed presentations of the
Gibbs sampling within the general framework of Bayesian inference and
its application for variance components estimation under several models
have been published by Sorensen and Gianola (2002). In this chapter, the
application of the Gibbs sampler for variance component estimation and
prediction of breeding values with a univariate and multivariate animal
models is presented and illustrated.

12.2. Univariate Animal Model

Consider the following univariate linear model:
y = Xb + Zu + e

where terms are as defined in [3.1] but with u = a in [3.1]. The conditional
distribution which generates the data, y, is:

y b u Xb Zu R| , , N(s se e
2 2~ )+ + [12.3]

12.2.1 Prior distributions

Prior distributions of b, u, su
2 and s e

2 are needed to complete the Bayesian
specification of the model (Wang et al., 1993). Usually a flat prior

248 Chapter 12
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distribution is assigned to b. Thus:

P(b) ~ constant [12.4]

This represents an improper or ‘flat’ prior distribution, denoting lack of
prior knowledge about this vector. However, if there is information a
priori about the value of b in terms of upper or lower limits, this can be
incorporated in defining the posterior distribution of b. Such a prior
distribution will be termed proper prior distribution. Assuming an infini-
tesimal model, the distribution of u is multivariate normal and is:

u A A| ~ , ), N(Os su u
2 2 [12.5]

A scaled inverted chi-squared distribution (c 2) is usually used as pri-
ors for the variance components (Wang et al., 1993). Thus, for the residual
variance:

P v s
v s

e e e e

v
e e

e

e

( | , ) ( ) exps s
s

2 2 2 2
1 2

22
∝ −⎛

⎝⎜
⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟ [12.6]

and the additive genetic variance:

P v s
v s

u u u u

v
u u

u

u

( | , ) ( ) exps s
s

2 2 2 2
1 2

22
∝ −⎛

⎝⎜
⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟ [12.7]

where ve (vu) is a ‘degree of belief’ parameter and s se u
2 2( )can be interpreted

as a prior value of the appropriate variance component. Alternatively,
prior uniform distribution could be assigned to the variance components
such that:

P j( )s 2 ∝ constant [12.8]

where s s sj e u
2 2 2= or and an upper limit might be assigned for s j

2 based on
prior knowledge. Setting ve or vu to −2 and s e

2 or su
2 to 0 in [12.6] or [12.7]

gives [12.8].

12.2.2 Joint and full conditional distributions

The joint posterior distribution of the parameters ( , , )b u s se u
2 2or is pro-

portional to the product of the likelihood function and the joint prior dis-
tribution. Using [12.3] to [12.7], the joint posterior distribution can be
written as:

P u e

e

n ve

( , , | )

( ) exp
( )

b u y

y Xb Zu

s s

s

2 2

2 2
1

,

∝ − − − ′− + +⎛
⎝⎜

⎞
⎠⎟ ( )y Xb Zu− − +⎡

⎣
⎢

⎤

⎦
⎥

v se e

e

2

22s

( ) exps
s

u

m v
u u

u

u v s2 2
1 1 2

22

− + +⎛
⎝⎜

⎞
⎠⎟

−′ +⎛
⎝⎜

⎞
⎠⎟

u A u
[12.9]
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assuming n observations and m animals. Setting ve or vu and s e
2 or su

2

to zero gives the joint posterior distributions for the uniform distribution
in [12.8].

The full conditional posterior distribution of each parameter is obtained
by regarding all other parameters in [12.9] as known. Thus, for b:

P u e
e

( | , , ) exp
( ) ( )

b u y
y Xb Zu y Xb Zu

s s
s

2 2
22

, ∝ − − − ′ − −⎛
⎝⎜

⎞
⎠⎟

[12.10]

A corresponding distribution to the above is:

Xb u y y Zu I| , ~ ( , ), , Ns s su e e
2 2 2−

or:

′ ′ − ′X Xb u y X y Zu X X| , ~ ( ( ), ), , Ns s su e e
2 2 2

Therefore:

b u y b X X| , ~ ( $, ( ) ), , Ns s su e e
2 2 1 2′ −

where:
$ ( ) ( )b X X X y Zu= ′ ′ −−1

Thus, for the jth level of b:

b bj j u e j j j e| , , Nb u y x x− −′, , ~ ( $ , ( ) )s s s2 2 1 2 (12.11)

with $ ( ) ( )bj j j j j j= ′ ′ − −− −x x x y X b Zu1 , which is equivalent to [3.5], xj is the
jth row of X and b−j is the vector b with level j deleted.

Similarly, the distribution for the jth random effect is:

u b u y u z z Aj j u e j j j j j e| N, , , , ~ ( $ , ( ) ),− − −′ +s s s2 2 1 1 2a [12.12]

with:

$ ( ) ( ), ,u z z A z Xb A uj j j j j j j j jy= ′ + ′ − −− −
−

− −1 1 1a a

which is equivalent to [3.8].
The full conditional of distribution of the residual variance is derived

from [12.9] by considering only terms that involve s e
2 and is in the scaled

inverted c 2 form (Wang et al., 1993). Thus, for the residual variance:

P
v s

e u e

n v
e e

e

e

( , , , ) ( ) exps s s
s

2 2 2 2
1 2

2
|b u y ∝ −

− + +⎛
⎝⎜

⎞
⎠⎟

t t

2

⎛
⎝⎜

⎞
⎠⎟

where:
t
v n ve e= + and

t t
s v s ve e e e

2 2= − − ′ − − +(( ) ( )) )/y Xb Zu y Xb Zu

Hence:

s se u e e vv s
e

2 2 2 2| , , ~b u y, c
t t

t− [12.13]

which involves sampling from a c 2 distribution with scale parameter
( ) ( )y Xb Zu y Xb Zu− − ′ − − + v se e

2 and
t
v e degrees of freedom.
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Similarly, the full conditional distribution of su
2 is also in the form of

an inverted chi-square. Thus:

P
v s

u e u

m v
u u

u

u

( | , , , ) ( ) exps s s
s

2 2 2 2
1 2

2
b u y ∝ −

− + +⎛
⎝⎜

⎞
⎠⎟

t t

2

⎛
⎝⎜

⎞
⎠⎟

where:
t
v m vu u= + and

t t
s v s vu u u u

2 1 2= ′ +−(( ) )/u A u

Thus:

s su u u u vv s
u

2 2 2 2| , , ~b u y, c
t t

t− [12.14]

which involves sampling from a c 2 distribution with scale parameter
( )′ +−u A u1 2v su u and

t
vu degrees of freedom.

The Gibbs sampling then consists of setting initial values for b, u, su
2

and s e
2 and iteratively sampling successively from [12.11] to [12.14],

using updated values of the parameters from the i round in the i + 1
round. Assuming that k rounds of iteration were performed, then k is
called the length of the chain. As mentioned earlier, the first j samples are
usually discarded as the burn-in period. This is to ensure that samples
saved are not influenced by the priors but are draws from the posterior
distribution. The size of j is determined rather arbitrarily, but a graphical
illustration could help.

Several strategies can be implemented in using the Gibbs sampler and
these have an effect on the degree of correlation between the values sam-
pled. Details of various strategies are discussed in detail by Sorensen and
Gianola (2002) and therefore not presented here. One approach is to run a
single long chain. A sample ( , , , )b u s su e

2 2 is saved at every dth iterate until
a total t samples are saved and analysed. The larger d is, the lower the
degree of autocorrelation between the samples. Another strategy, known
as the multiple chain or short chain approach, involves carrying out sev-
eral parallel t runs and saving the last nth sample from each run. Thus this
approach produces m = nt samples. The different chains will produce dif-
ferent realizations, even if the same starting values are used. However, if
the parameters in the model are highly correlated, it might be useful to
utilize different starting values in the different chains.

Determining convergence with the Gibbs sampler is not very straight-
forward but it is advisable, depending on the size of the problem, to run
several chains and check convergence graphically.

12.2.3 Inferences from the Gibbs sampling output

The samples saved are usually analysed to estimate posterior means or
variances of the posterior distribution. Detailed discussion of various
estimation methods is covered in Sorensen and Gianola (2002) and not
presented here. Given that w is a vector of size k, containing the saved
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samples, then the posterior mean and variance can be computed, respec-
tively, as:

m f

i
i

k
f w

k
= =

∑ ( )
1 [12.15]

and:

var( )

( ( ) )

m

m

f

i f
i

k
f w

k
=

−
=
∑ 2

1

where f (w) is a function of interest of the variables in w. For instance, in
the linear animal model in Section 12.2 the function of interest would be
the variance components ( )s su e

2 2and and the vectors b and u.
The above estimates from the posterior distributions are associated

with sampling variance (Monte Carlo variance). The larger the number of
samples analysed, the smaller the sampling variance. It is usually useful
to get an estimate of the sampling variance associated with the estimates
from the posterior distributions. An empirical estimate could be obtained
by running several independent runs and then computing the
between-chain variance of the estimates obtained for each run. This is not
computationally feasible in most practical situations and various meth-
ods are used to estimate this variance. A number of such estimators are
fully discussed by Sorensen and Gianola (2002). A simple method that
could be used involves calculating the batch effective chain size. Given a
chain of size k, successive samples are grouped into b batches, each of
size t. The average of the jth batch can be computed as:

u

f w

t
j

i
i

t

= =
∑ ( )

1

The batch estimator of the variance of m in equation [12.15] is:

var ( )

( )

( )
b

j
j

b
u

b b
m

m

=

−

−
=
∑ 2

1

1

The batch effective chain size can be obtained as:

y

m

b

i
i

k

b

f w

k u
=

−

−
=
∑ [ ( ) ]

( )var ( )

2

1

1

If samples are uncorrelated, then y = k. The difference between y and k
gives an idea of the degree of the autocorrelation among the samples in
the chain.
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12.2.4 Numerical application

Example 12.1
Using the data in Example 3.1 and the variance components, the applica-
tion of Gibbs sampling for estimation of variance components and the pre-
diction of breeding values is illustrated. Uniform priors are assumed for
the variance components such that v ve a= = −2 and s se u

2 2 0= = . A flat
prior is assumed for b, and u is assumed to be normally distributed.

First, sample b 1
1[ ], where, the superscript in brackets denotes iteration

number, using [12.11], with $b 1 calculated using [3.5] and ( )′ =−x xj e
1 2s

( ) .3 40 133331− = . From [3.5]:
$ [( . . . ) ( )]/ .b 1 45 35 50 0 0 0 3 4333= + + − + + =

Assuming the random number (RN) generated from a normal distribution,
N(0,1), is 0.1704, then b1 from [12.11] is:

b 1
1 4333 01704 13333 4955[ ] ( . . ( . )) .= + =

Then sample b2 using [12.11] with ( ) ( )′ = =− −x xj e
1 2 12 40 20s and $b 2 is:

$ [( . . ) ( )]/ .b 2 29 39 0 0 2 340= + − + =

Assuming the RN from N(0,1) is −0.1294, then:

b 2
1 340 01294 20 2821[ ] . . .= − =

The vector of solution uj for animal j is sampled using [12.12], with $u j cal-
culated using equation [3.8]. Thus, for animal 1:

$ ( ) ( . ) .,u z z A1 1 1 1 1
1 1 2 10 3667 40 10908= ′ + = =− − −and a s e

The value of ( ),′ + − −z z A1 1 1 1
1 1a is taken from the diagonal element of the

coefficient matrix of the mixed model equations (MME) for Example 3.1.
Assuming the RN from N(0,1) is 0.2067:

u 1
1 0 02067 1098 0683[ ] . . .= + =

For animal 2, $u 2 from [3.8] = −0.171, and ( ),′ + =− −z z A1 1 1 1
1 1 2a s e

( )4 40 101− = . Then, from [12.12], assuming RN from N(0,1) is −1.8025:

u 2
1 0171 18025 10 5871[ ] . ( . ) .= − + − = −

Similarly, given that $u 3 from [3.8] = 1.468, ( ) ( ),′ + = =− − −z z A1 1 1 1
1 1 2 14 40 10a s e

and RN = −0.5558, then:

u 3
1 1468 05558 10 0290[ ] . . .= − = −

For animal 4, $u4 = 0.0976 from [3.8], ( ) ( . ) .,′ + = =− − −z z A1 1 1 1
1 1 2 14667 40 8571a s e

and RN = −1.8654; then:

u4
1 00976 18654 8571 5364[ ] . . . .= − = −

Similar calculations using [12.12] gave estimates of u u u u5
1

6
1

7
1

8
1[ ] [ ] [ ] [ ], , and

as −3.097, −2.577, −1.621 and −0.697, respectively.
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The vector of residuals, $e y Xb Zu= − − , is:

$

$

$

$

$

.

.

.

.

.

e

e

e

e

e

4

5

6

7

8

45
29
39
35
50

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

−

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
4955
2821
2821
4955
4955

.

.

.

.

.

⎟
⎟
⎟
⎟
⎟

−

−
−
−
−
−

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

5364
3097
2577
1621
0697

.

.

.

.

.
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

4908
3176
3656
0165
0742

.

.

.

.

.

and $ $ .′ =e e 48118. Sampling from the inverted c 2 distribution with 3
degrees of freedom [12.13] gave an estimate of 39.870 for the residual
variance.

Using [12.14], sampling for su
2 is again from the inverted c 2 distribu-

tion, with ′ =−u A u1 9311. and degrees of freedom being 6. An estimate of
23.913 was obtained for su

2. Note that it is easier to compute ′ −u A u1 using
[2.3]. Thus ′ = ′ ′ = ′− − − −u A u u T D T u m Dm1 1 1 1( ) , where m T u= −1 , with m
being a vector of Mendelian sampling for animals, calculated using [2.2].

The next round of iteration is then commenced, using the updated
values computed for the parameters.

12.3 Multivariate Animal Model

In this section, the Gibbs sampling algorithm developed by Jensen et al.
(1994) for models with maternal genetic effects is generalized for a
multivariate situation. Given that animals are ordered within traits, the
multivariate model for two traits could be written as:

y
y

X
X

b
b

Z
Z

u
u

1

2

1

2

1

2

1

2

1

2

0
0

0
0

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟

e
e

1

2

where terms are as defined in equation [5.1], with u = a. The conditional
distribution of the complete data, given that animals are ordered within
traits, is:

y
y

b b u u R N
X b Z u
X b Z u

R I1

2
1 2 1 2

1 1 1 1

2 2 2 2
, , , , ~ ,

+
+

⊗⎡

⎣
⎢

⎤

⎦
⎥ [12.16]

It is assumed that:

u
u

G A N
0
0

G A1

2
, ~ , ⊗⎡

⎣
⎢

⎤

⎦
⎥ [12.17]

where G is the genetic covariance matrix and A is the numerator relation-
ship matrix.

12.3.1 Prior distributions

Assume that proper uniform distributions are defined for the fixed effects:

P P( ) ( )b b1 2constant; constant∝ ∝
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with:

b b bi i i(min) (max)≤ ≤

An inverted Wishart distribution (Jensen et al., 1994) is used as prior dis-
tribution for the genetic and residual covariances. Thus the prior distribu-
tion for the residual covariance is:

P ve e
v p

e
e( , ) | | exp[ ( )]( )R V R R V| tr∝ −− + + − −1

2
1 1

2
1 1 [12.18]

The above is a p-dimensional inverse Wishart distribution (IW2), where p
is the order of R, Ve is a parameter of the prior distribution and ve is the
degree of freedom. If Ve = 0and v pe = − +( )1 , the above reduces to a uniform
distribution. Similarly, for the genetic covariance, the following prior
distribution is assumed:

P vu u
v p

u
u( , ) | | exp[ ( )]( )G V G G V| tr∝ −− + + − −1

2
1 1

2
1 1 [12.19]

with terms Vu and vu equivalent to Ve and ve, respectively, in equation [12.18].
The joint posterior distribution, assuming n traits and using [12.16]–

[12.19], is:

P n n( , , , , , , , )b b u u R G1 1K K

∝ p p p pn n n n( , , | , , , , , , ) ( , , | ) ( ) ( )y y b b u u R u u G G R1 1 1 1K K K K [12.20]

12.3.2 Conditional distributions

Using the same principles as those for obtaining equations [12.11] and
[12.12], the conditional distribution for level k of the ith trait is:

b |b b u R G y N b x r xi k i k j e i k i k
ii

i k j, , , , ,, , , , , ~ ( $ , ( ) );− −′ 1 = ≠1, n j iand
[12.21]

with:

$ ( ) ( ) (, , , , ,b x r x x r y r y r xi k i k
ii

i k i k
ii

i
ij

j
ii

i= ′ ′ + − ′− −1
k i k i i

ij
j j j j j n j i

b z u

r x b z u
, )

( ); ,
− +

− + = ≠1 and

Similarly, for the random animal effect, the conditional distribution
for animal k of the ith trait is:

u |u u b R G y N u r z z g Ai k i k j e i k
ii

i k i k
ii

k, , , , ,, , , , , ~ ( $ , (− ′ + , ) ),

,
k

j n j i

− −

= ≠

1 1

1 and [12.22]
with:

$ ( ) { (, , , , ,u z r z A g z r y r yi k i k
ii

i k k k
ii

i k
ii

i
ij

j= ′ + ′ +− −1 1 − −

− ′ + −−

r x b r x b

z z A g u A

ii
i i

ij
j j

i k
ij

j k k k
ij

j k kr

)

( ), , , , ,
1

s
ii

i s
ij

j s
− +1 ( )}, ,g u g u

where s represents the known parents of the kth animal.
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However, instead of sampling for each level of fixed or random effects
for one trait at a time, it is more efficient to implement block sampling for
each level of fixed or random effect across all traits at once. The condi-
tional distribution for level k of a fixed effect required for block sampling,
assuming n = 2, is:

b
b

b u R G y b
b

X R X1

2

1

2

1 1,

,

,, , , , ~
$

$
, ( )k

k
k

k

k
k k− − −′

⎡

⎣
⎢
⎢

⎤

⎦
N

,
⎥
⎥

[12.23]

where:

$

$
( ) ( ( $,

,

b
b

X R X X R y X b Zu1

2

1 1 1k

k
k k k k k k

⎛

⎝
⎜

⎞

⎠
⎟ = ′ ′ − −− − − − − ))

which is equivalent to equation [5.4].
For the random animal effect, block sampling for animal k, assuming

n = 2, the conditional distribution is:

u
u

b u R G y
u
u

Z R Z A1

2

1

2

1 1,

,
,

,
,, , , ~

$

$
, (k

k
j k

k

,k
k k k k, − − −′ +N ⊗

⎡

⎣
⎢

⎤

⎦
⎥− −G 1 1) [12.24]

where:

$

$
( )

{( (

,

,

u
u

Z R Z A G

Z R y X

1

2

1 1 1 1

1

k

k
k k

k k

⎛
⎝
⎜

⎞
⎠
⎟ = ′ + ⊗

′ −

− − − −

− b A G u u) ( $ $ )}− ⊗ +− −1 1
s d

where s and d are the sire and dam of the kth animal.
From [12.20], the full conditional distribution of the residual variance is:

P P P( , , ) ( ) ( , , )R b u y R y b u R| |∝

Including the prior distribution, the above can be expressed (Jensen et al.,
1994) as:

P v p m
e e

e( , , ) | | exp[ { ( )( )R|b u y R R S V∝ − +− + + + − −1
2

1 1
2

1 2 1tr }]

where m is the number of records and Se
2 is:

S
e e e e
e e e e

e
2 1 1 1 2

2 1 2 2
=

′ ′
′ ′

⎛
⎝
⎜

⎞
⎠
⎟

$ $ $ $

$ $ $ $

assuming that n = 2 and $e = yi − Xibi − Ziui, i = 1, n.
Thus:

R b u y S V v| IW2, , ~ (( ) , )e e e m2 1 1+ +− − [12.25]

which is in the form of a p-dimensional inverted Wishart distribution,
with ve + m degrees of freedom and scale parameter (S Ve e

2 1+ − ).
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Similarly, the conditional distribution for the additive genetic vari-
ance is:

P P P( , , ) ( ) ( )G|b u y G u|G∝

Including the prior distribution, the above can be expressed (Jensen et al.,
1994) as:

P v p q
u u

u( , , ) | | exp[ { ( )( )G|b u y G G S V∝ − +− + + + − −1
2

1 1
2

1 2 1tr }]

where q is the number of animals and, assuming n = 2, Su
2 is:

S
u A u u A u
u A u u A u

u
2 1

1
1 1

1
2

2
1

1 2
1

2
=

′ ′
′ ′

⎛
⎝
⎜

⎞
⎠
⎟

− −

− −

Thus:

G|b u y S V v, , ~ (( ) , )IW2 u u u q2 1 1+ +− − [12.26]

which again is in the form of a p-dimensional inverted Wishart distribu-
tion with vu + q degrees of freedom and scale parameter ( )S Vu u

2 1+ − .

12.3.3 Numerical illustration

Example 12.2
Using the data in Example 5.1 and the variance components, the applica-
tion of Gibbs sampling for estimation of variance components and the pre-
diction of breeding values are illustrated. Uniform priors are assumed for
the variance components such that ve = vu = −3 and Ve = Vu = 0. A flat
prior is assumed for b, and u is assumed to be normally distributed.

Process data and accumulate right-hand side (rhs) and diagonals
(Diag) for level j of sex of calf effects as:

rhs1j = rhs1j + R11(y1 − $u 1i ) + R12(y2 − $u 2i )
rhs2j = rhs2j + R21(y2 − $u 1i ) + R22(y2 − $u 2i )
Diagj = Diagj + R

When all data have been read, calculate solutions for level j of sex
effect as:

$

$
b

b
j

j
j

j

j

1

2

1 1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

⎛
⎝
⎜

⎞
⎠
⎟−Diag

rhs
rhs

Sample bj in [12.23] as:

b Diag hj
j

j
j=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + −

$

$
{ ( )}

b

b
1

2

1CHOL
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where h is the vector of normal deviates from a population of mean zero
and variance 1 and CHOL is the Cholesky decomposition of the inverse of
the matrix Diag.

Next, process data and accumulate right-hand side (rhs) and diago-
nals (Diag) for animal i as:

rhs1i = rhs1i + R11(y1 − $b 1j ) + R12(y2 − $b 2j )
rhs2i = rhs2i + R21(y2 − $b 1j ) + R22(y2 − $b 2j )
Diagi = Diagi + R

When all data have been read, calculate solutions for animal i as:

$

$

u

u
i

i
i

i

i

1

2

1 1

2

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟−Diag

rhs
rhs

Sample ui in [12.24] as:

u Diag hi
i

i
i=

⎛
⎝
⎜

⎞
⎠
⎟ + −

$

$
{ ( )}

u

u
1

2

1CHOL

All data are then processed to obtain residual effects as:

$
$

$

$ $
$ $

e
e
e

y X b Z u
y X b Z u

=
⎛
⎝
⎜

⎞
⎠
⎟ = − −

− −

⎛

⎝
⎜

⎞

⎠
⎟1

2

1 1 1 1 1

2 2 2 2 2

and calculate residual sums of squares, S eee
2 = ′$ $ . Then compute

T S V= + − −( )e e
2 1 1. Cholesky decomposition of T is carried out to obtain LL¢,

where L is a lower triangular matrix. Sampling from a Wishart distribu-
tion, with L as the input matrix and ve + m degrees of freedom [12.25],
generates a new sample value of R.

Similarly, to compute a new sample value of G using [12.26], first
compute T S V− − −= +1 2 1 1( )u u . Decompose T to obtain LL¢ and sample from
a Wishart distribution with L as the input matrix and vu + q degrees of
freedom. Another cycle of sampling is then initiated until the desired
length of chain is achieved. Post-processing of results can be carried out,
as discussed in Section 12.2.3.

258 Chapter 12

272
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:25:54 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



13 Solving Linear Equations

Different methods can be utilized to solve the mixed model equations
(MME) covered in the previous chapters. These various methods could
broadly be divided into three main categories:

1. Direct inversion (Section 13.1).
2. Iteration on the MME (Section 13.2).
3. Iteration on the data (Section 13.3).

The manner in which the MME are set up depends on the method to be
utilized in solving these equations. As shown later in Section 13.3 below,
the third method, for instance, does not involve setting up the MME
directly.

13.1 Direct Inversion

The solutions to the MME in the various examples given so far in this
book have been based on this method. It involves setting up the MME and
inverting the coefficient matrix. Solutions are obtained by multiplying the
right-hand side (RHS) by the inverse of the coefficient matrix. Thus b, the
vector of solution, is calculated as:

$b C y= −1

where C is the coefficient matrix and y is the RHS. Since the coefficient
matrix is symmetric, only the upper triangular portion is usually set up
and inverted. The major limitation of this approach is that it can only be
applied to small data sets in view of the memory requirements and
computational difficulties of inverting large matrices.
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260 Chapter 13

13.2 Iteration on the Mixed Model Equations

This involves setting up the MME and iterating on these equations until
convergence is achieved at a predetermined criterion. The iterative proce-
dures are based on the general theory for solving simultaneous equations.
For instance, given two simultaneous equations with unknown parame-
ters, b1 and b2, the first equation can be solved for b1 in terms of b2. This
value of b1 can then be substituted in the second equation to solve for b2.
The value of b2 is then substituted in the first equation to calculate b1.
This is the principle upon which the iterative procedures are based. In the
iterative procedure, the above process is continued until the solutions
for the b terms are more or less the same in each round of iteration and the
equations are said to have converged. There are various iterative proce-
dures that can be utilized.

13.2.1 Jacobi iteration

One of the simplest methods is Jacobi iteration or total step iteration.
Consider the following set of simultaneous equations:

c c c

c c c

c c c

b

b

b

11 12 13

21 22 23

31 32 33

1

2

3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

y

y

y

1

2

3

These equations can also be written as:

c b c b c b y11 1 12 2 13 3 1+ + =
c b c b c b y21 1 22 2 23 3 2+ + =
c 31 1 32 2 33 3 3b c b c b y+ + =

or as:

Cb = y [13.1]

The system of equations is rearranged so that the first is solved for b1, the
second for b2 and the third for b3. Thus:

b c y c b c br r r
1

1
11 1 12 2 13 3

+ = − −(1/ )( )
b c y c b c br r r

2
1

22 2 21 1 23 3
+ = − −(1/ )( ) [13.2]

b c y c b c br r r
3

1
33 3 31 1 32 2

+ = − −(1/ )( )

The superscript r refers to the number of the round of iteration. In the first
round of iteration, r equals 1 and b1 to b3 could be set to zero or an
assumed set of values which are used to solve the equations to obtain a
new set of solutions (b terms). The process is continued until two succes-
sive sets of solutions are within previously defined allowable deviations
and the equations are said to converge. One commonly used convergence
criterion is the sum of squares of differences between the current and pre-
vious solutions divided by the sum of squares of the current solution.
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Once this is lower than a predetermined value, for instance 10−9, the equa-
tions are considered to have converged.

From the set of equations above, the solution for bi was obtained by
dividing the adjusted right-hand side by the diagonal (aii). It is therefore
mandatory that the diagonal element, often called the pivot element, is
not zero. If a zero pivot element is encountered during the iterative pro-
cess, the row containing the zero should be exchanged with a row below
it in which the element in that column is not zero. To avoid the problem
of encountering a zero pivot element and generally to improve the effi-
ciency of the iterative process, it is sometimes recommended that the
system of equations should be ordered such that the coefficient of b1 of
the greatest magnitude occurs in the first equation, the coefficient of b2
of the greatest magnitude in the remaining equations occurs in the
second equation, etc.

The iterative procedure described above is usually termed Jacobi iter-
ation, in which all new solutions in the current (r) round of iteration are
obtained using solutions only from the previous (r − 1) round of iteration.
The Jacobi iterative procedure is inefficient in handling systems of equa-
tions which are not constrained (that is, with no restrictions placed on the
solutions for the levels of an effect) and convergence is not guaranteed
(Maron, 1987; Misztal and Gianola, 1988). When random animal effect is
involved in the system of equations with relationships included, it is usu-
ally necessary to use a relaxation factor of below 1.0; otherwise equations
may not converge (Groeneveld, 1990). The relaxation factor refers to a
constant, estimated on the basis of the linear changes in the solutions dur-
ing the iteration process and applied to speed up the solutions towards
convergence. When iterating on the data (Section 13.3), the Jacobi itera-
tive procedure involves reading only one data file, even with several
effects in the model. With large data sets this has the advantage of reduc-
ing memory requirement and processing time compared with the
Gauss–Seidel iterative procedure (see Section 13.2.2).

The Jacobi iterative procedure can be briefly summarized as follows.
Following Ducrocq (1992), equation [13.1] can be written as:

[M + (C − M)]b = y

if M is the diagonal matrix containing the diagonal elements of C; then the
algorithm for Jacobi iteration is:

b M y Cb b( ) ( ) ( )( )r + −= − +1 1 r r [13.3]

When a relaxation factor is applied, the above equation becomes:

b M y Cb b( ) ( ) ( )( )]r w+ −= − +1 1[ r r

Another variation of Jacobi iteration, called second-order Jacobi, is
usually employed in the analysis of large data sets and it can increase the
rate of convergence. The iterative procedure for second-order Jacobi is:

b M y Cb b b b( ) ( ) ( ) ( )( ( ))r r r+ − −= − + + −1 1 1r r w ( )
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Example 13.1
Using the coefficient matrix and the right-hand side for Example 3.1,
Jacobi iteration [13.2] is carried out using only the non-zero element of the
coefficient matrix. Solutions for sex effect (b vector) and random animal
effect (u vector) are shown below with the round of iteration. The conver-
gence criterion (CONV) was the sum of squares of differences between the
current and previous solutions divided by the sum of squares of the
current solution.

Rounds of iteration

Effects 0a 1 2 3 4 16 17 18 19 20

$b1 4.333 4.333 4.381 4.370 4.368 4.358 4.358 4.358 4.358 4.358
$b2 3.400 3.400 3.433 3.365 3.414 3.404 3.404 3.404 3.404 3.404
$u1 0.000 0.267 0.164 0.185 0.131 0.099 0.099 0.099 0.099 0.099
$u2 0.000 0.000 −0.073 −0.003 −0.039 −0.018 −0.018 −0.018 −0.018 −0.018
$u3 0.000 −0.033 −0.080 −0.049 −0.070 −0.041 −0.041 −0.041 −0.041 −0.041
$u4 0.167 −0.138 −0.007 −0.035 0.000 −0.008 −0.008 −0.008 −0.008 −0.008
$u5 −0.500 −0.411 −0.248 −0.265 −0.204 −0.185 −0.185 −0.185 −0.185 −0.185
$u6 0.500 0.345 0.318 0.237 0.236 0.178 0.178 0.178 0.177 0.177
$u7 −0.833 −0.406 −0.390 −0.301 −0.295 −0.249 −0.249 −0.249 −0.249 −0.249
$u8 0.667 0.400 0.286 0.232 0.207 0.183 0.183 0.183 0.183 0.183
CONV 1.000 2.3−2 3.9−3 1.4−3 5.9−4 4.2−8 1.6−8 1.0−8 4.1−9 3.0−9

a Starting values.

The starting solutions for sex effect were the mean yield for each sex
subclass and, for animals with records, starting solutions were the devia-
tion of their yields from the mean yield of their respective sex subclass and
zero for ancestors. The final solutions obtained after the 20th round of itera-
tion were exactly the same as those obtained in Section 3.1 by direct inver-
sion of the coefficient matrix. The solutions for sex effect were obtained
using [13.2]. Thus, in the first round of iteration the solution for males was:

$ ( )$ ( )$ ( )$b
c

y u u uk
k

m

1
11 1

4 7 8
1

1 1 1= − − −
⎛

⎝
⎜

⎞

⎠
⎟

=
∑

where cii is the diagonal element of the coefficient matrix for level i of sex
effect and m is the number of records for males.

b1 = 1/3(13.0 − 0.167 − (−0.833) − 0.667) = 4.333

However, using [13.2] to obtain animal solutions caused the system of
equations to diverge. A relaxation factor (w) of 0.8 was therefore
employed and solutions for animal j were computed as:

$ $ $ $u w
c

y c b c u uj
r

ll
j li i

r
lt k

r

k
j= ⎛

⎝⎜
⎞
⎠⎟

− −
⎛

⎝
⎜

⎞

⎠
⎟ −− −∑1 1 1 r

j
ru− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+1 1$
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where l = j + n, t = k + n, with n = 2; the total number of levels of fixed
effect, clt and cli, for instance, are the elements of the coefficient matrix
between animals j and k, and animal j and level i of sex effect, respec-
tively. Thus, in the first round of iteration, solutions for animals 1 and 8
are calculated as:

$ [{ / ( ( )$ ( . )$ ( )$ )} $u w c y u u u1
1

33 1 2
0

4
0

6
01 1 1333 2= − − − − − − u u1

0
1
0] $+

= − − − − − − +w[{ / . ( ( . ( ))} ]13667 0 0 0223 1 0 0
= 0.8(0.334 − 0) + 0 = 0.267

and:

$ [{ / ( ( ) ( )$ ( )$ )} $u w c y b u u u8
1

1010 8 1
0

3
1

6
1

8
01 1 2 2= − − − − − − ] $+ u8

0

= w[{1/5(5 − 4.333 − 0 − (−1)} − 0.667] + 0.667
= 0.8(0.333 − 0.667) + 0.667 = 0.400

13.2.2 Gauss–Seidel iteration

Another iterative procedure commonly used is Gauss–Seidel iteration.
This is similar to Jacobi iteration except that most current solutions are
calculated from the most recent available solution rather than the solution
from the previous round of iteration. Using the same set of simultaneous
equations as in equation [13.1], solutions for b1, b2 and b3 in the first
round of iteration become:

b c y c b c br r r
1

1
11 1 12 2 13 3

+ = − −(1/ )( )
b c y c b c br r r

2
1

22 2 21 1
1

23 31+ += − −( / )( ) [13.4]
b c y c b c br r r

3
1

33 3 31 1
1

32 2
11+ + += − −( / )( )

Thus the solution for b2 in the r + 1 round of iteration is calculated using
the most recent solution for b1 (b r

1
1+ ) instead of the previous solution (b r

1),
and the current solution for b3 is calculated from the current solutions for
b1 (b r

1
1+ ) and b2 (b r

2
1+ ). If, in equation [13.3], L is strictly the lower triangu-

lar matrix of C and D is a diagonal matrix of C, then equation [13.3]
becomes the Gauss–Seidel iteration when M = L + D. The convergence
criteria could equally be defined as discussed in Section 13.2.1. Gener-
ally, equations are guaranteed to converge with the Gauss–Seidel iterative
procedure. However, when iterating on the data, this iterative procedure
involves reading one data file for each effect in the model. With large data
sets, the setting up of data files for each effect could result in a large
memory requirement and the reading of several files in each round of iter-
ation could increase processing time.

Example 13.2
Using the same coefficient matrix, right-hand side and starting values as
in Example 13.1 above, the Gauss–Seidel iteration [13.4] is carried out for
the same number of iterations as in Jacobi’s method and the results are
shown below. The convergence criterion is as defined in Example 13.1.
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Rounds of iteration

Effects 0 1 2 3 4 16 17 18 19 20

b1 4.333 4.333 4.400 4.372 4.364 4.359 4.359 4.359 4.359 4.359
b2 3.400 3.400 3.392 3.403 3.407 3.405 3.405 3.405 3.405 3.405
$u1 0.000 0.333 0.194 0.149 0.115 0.098 0.098 0.098 0.098 0.098
$u2 0.000 −0.083 −0.035 −0.006 −0.008 −0.019 −0.019 −0.019 −0.019 −0.019
$u3 0.000 −0.021 −0.136 −0.109 −0.076 −0.041 −0.041 −0.041 −0.041 −0.041
$u4 0.167 −0.119 0.001 0.004 −0.003 −0.009 −0.009 −0.009 −0.009 −0.009
$u5 −0.500 −0.376 −0.261 −0.218 −0.199 −0.186 −0.186 −0.186 −0.186 −0.186
$u6 0.500 0.392 0.254 0.204 0.185 0.177 0.177 0.177 0.177 0.177
$u7 −0.833 −0.364 −0.284 −0.260 −0.253 −0.250 −0.250 −0.250 −0.250 −0.250
$u8 0.667 0.282 0.167 0.164 0.171 0.182 0.183 0.183 0.183 0.183
CONV 1.000 1.9−2 3.4−3 3.1−4 1.0−4 7.0−10 4.0−10 2.0−10 1.0−10 8.0−11

CONV, convergence criterion.

The solutions obtained are the same as those obtained from Jacobi itera-
tion and by direct inversion of the coefficient matrix in Example 3.1. In
addition, the equations converged faster than when using Jacobi iteration
and no relaxation factor was applied.

Iterating on the MME equations could be carried out as described
above, once the equations have been set up, using only the stored
non-zero elements of the coefficient matrix. In practice, it may be neces-
sary to store the non-zero elements and their rows and columns on disk
for large data sets because of the memory requirement, and these are read
in each round of iteration.

13.3 Iterating on the Data

This is the most commonly used methodology in national genetic evalua-
tions, which usually involve millions of records. Schaeffer and Kennedy first
presented this method in 1986. It does not involve setting up the coefficient
matrix directly, but it involves setting up equations for each level of effects in
the model as the data and pedigree files are read and solved using either
Gauss–Seidel or Jacobi iteration or a combination of both or a variation of
any of the iterative procedures, such as second-order Jacobi. Presented below
are the basic equations for the solutions of various effects under several mod-
els and these form the basis of the iterative process for each of the models.

The equation for the solution of level i for a fixed effect in the model
in a univariate animal situation is equation [3.5], which is derived from
the MME and can be generalized as:

$

$

b

y w

n
i

ki
k

n

ij
j

m

i

i

=

−
= =
∑ ∑

1 1 [13.5]
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where yki is the kth record in level i, m is the total number of levels of
other effects within subclass i of the fixed effect and $w ij is the solution for
the jth level, and ni is the number of records in fixed effect subclass i.
However, when there are many fixed effects in the model, the above for-
mula may be used to obtain solutions for the major fixed effect with many
levels, such as herd–year–season, while the vector of solutions (f) for
other minor fixed effects with few levels may be calculated as:

f X X X y w b= ′ ′ − −−( ) ( )1 $ [13.6]

where y is the vector of observations, (X¢X)−1 is the inverse of the coeffi-
cient matrix for the minor fixed effects, and $w and $b are vectors of solu-
tions for effects as defined in [13.5]. The matrix X¢X could be set up in the
first round of iteration and stored in the memory for use in subsequent
rounds of iterations.

The solution ( $u) for the level j (animal j) of the random animal effect in
the univariate animal model is calculated using equation [3.8], which can
be rewritten (replacing n3 by k) as:

$ ( $ $ ) { ( $ . ( $ ))}u n u u n yd k u uj s d o o mo
o

= + + + −
⎡

⎣
⎢

⎤

⎦
⎥∑1 2 05a a diag j [13.7]

with:

diag j o
o

n n k= + + ∑2 21 2( ) {( / ) }a a

where $us , $ud and ûo are solutions or estimated breeding values for the sire,
dam and oth progeny of animal j, respectively, $umo is the solution of the
mate of animal j with respect to progeny o, yd is yield deviation, that is,
yield of animal j corrected for all other effects in the model, n1 = 1 or 2/3 if
both or one parent of animal j is known, n2 is the number of records, ko is 1
or 2/3 if the other parent of progeny o (mate of animal j) is known or not
known and a s s= e a

2 2/ .
In the multivariate animal model situation with equal design and

random animal effect as the only random effect in addition to residual
effects, the solutions for the levels of fixed effect and animal effects are
obtained using equations [5.4] and [5.8], respectively, which are derived
from the mixed model equations [5.3].

For maternal animal model equations, the solutions for fixed effects
could be calculated using equations [6.3]. The equations for animal and
genetic maternal effects are based on equation [6.4], given earlier. From
equation [6.4], the solution (û) for direct effect for animal i is:

$ ( $ $ ) ( $ $ ) ( $ ) ( / )u n u u n m m n m ki s d s d i o= + + + − −1 1 1 2 4 2 22a a a a[ ( $ )

( $ $ ) { ( $ . ( $ ))}

m

n y b m pe k u u

k

i

i j d d o o mo
o

+ − − − + −

+

∑2 1 05a

]o
o

o mo im ma2 05∑ −( $ . ( $ ))} diag [13.8]
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with:

diag i o
o

n n k= + + ∑2 21 1 2 1( ) {( / ) }a a

where $mi , $ms , $md , $mo and $mmo are solutions for genetic maternal effects
for animal i, sire, dam and oth progeny of animal i, respectively, yi is the
yield for animal i, $bj is the solution for fixed effect j, $ped is the permanent
environmental effect for the dam of animal i, n1, n2 and ko are as defined
above, n4 = 2(n1) and a terms are as defined in equation [6.4].

The solution ( $m) for genetic maternal effect for animal i from [6.4] is:

m n u u n m m n u ki s d s d i o= + + + − −1 2 1 3 4 2 22a a a a( $ $ ) ( $ $ ) ( $ ) ( / ) ([ $ )

( $ $ $ $ ) { ( $ . ( $ ))}

u

n y b u m pe k u u

i

i j i d d o o mo+ − − − − + −2 2 05a
o
∑

]+ −∑ { ( $ . ( $ ))}k m mo o
o

mate ia3 05 diag [13.9]

with:

diag i o
o

n n k= + + ∑2 21 3 2 3( ) { / ) }a a

Solutions for permanent environmental effect are obtained using equa-
tion [6.5].

The computational procedure for a reduced animal model was pre-
sented by Schaeffer and Wilton (1987) using a bivariate analysis. The pro-
cedure is similar to the animal model described above except that records
for non-parents are written twice, one record for each parent. Conse-
quently the residual variance of non-parental records (r2) is multiplied by
2, that is:

r d de a e2
2 2 1 22 2 1= + = + −( ( )) ( )s s a s

where d = 1
2 or 3

4 if both or one parent is known and the contribution of
non-parents’ records to the diagonal of their parents is 0.5 instead of 0.25
(see Example 6.2).

The equations for solutions for levels of fixed and random effects are
similar to those defined earlier. From [13.5], if the residual variance for
parental records is defined as r1, the contribution of parental records to
the RHS for level i of a major fixed effect is:

RHSi ik kj
k

n
r y w

i

= −−

=
∑ ( ( $ ))1

1

1

[13.10]

where ni is the number of parental records in level i of fixed effect and $w kj is
the solution for the jth level of other effects in the model affecting record k.
The contribution of non-parental records to the RHS is included as:

RHS RHSi i k ki s d kj
k

m
r y u u w

l

= + − + −−

=
∑ ( ( . ( $ $ ) $ ))2

1

1

05 [13.11]
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where mi is the number of non-parental records in level i of fixed effect, $us
and $ud are solutions for the sire and dam of the non-parent with record k,
r k2

1− is the inverse of the residual variance for the non-parental record k
and $w kj is the solution for level j of other effects in the model apart from
random animal effects affecting record k. Then:

$b

r r
i

i

j

m

k

n ii
=

+− −

==
∑∑

RHS

1
1

2
1

11

The equation for the breeding value of the jth animal, which is a parent
with its own yield record, a non-parental record from progeny i and infor-
mation from another progeny (o), which is itself a parent, is:

[$ ( $ $ ) ( ) ( ( . )$ )u n u u n r yd n r yd uj s d j i mi= + + + −− −
1 2 1

1
3 2

1 05a

]+ −∑ { ( $ . ( $ ))}k u uo o mo j
o

a 05 diag [13.12]

with:

diag j o
o

n n r n r k= + + +− − ∑2 05 21 2 1
1

3 2
1( ) ( . ) {( / ) }a a

where ydj and ydi are yield deviations for animal j and progeny i, which is
a non-parent, ûmi is the breeding value for the mate of animal j with
respect to the ith progeny (non-parent), n2 is the number of observations
(records) on animal j, n3 is the number of non-parental records, r1

1− and
r2

1− are as defined earlier and all other terms are as defined in equation
[13.7]. Note that contributions from the oth progeny in the above equation
refer to those progeny of animal j which are themselves parents and that
non-parental records are adjusted for half the breeding value of the mate
of animal j. If animal j has no non-parental records from its progeny, equa-
tion [13.12] is the same as [13.7].

The principles of evaluation based on iterating on the data are illus-
trated below using a univariate animal model and a reduced animal
model with maternal effects.

13.3.1 Animal model without groups

Example 13.3
Using the same data as in Example 3.1 (Table 3.1) on the weaning weight
of beef calves, parameters and model, the principles of predicting breed-
ing values and estimating solutions for fixed effects iterating on the data
are illustrated using Gauss–Seidel iteration.

DATA ARRANGEMENT

Gauss–Seidel iteration requires the data files to be sorted by the effect to
be solved for. The pedigree file is needed when solving for animal solutions.
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The pedigree file is created and ordered in such a manner that contributions
to the diagonal and right-hand side of an animal from the pedigree, due to
the number of parents known (see type 1 record below) and from progeny
accounting for whether the mate is known (type 2 record), can be accumu-
lated while processing the animal. Thus, initially, a pedigree file is created,
consisting of two types of records:

1. Type 1 record for all animals in the data comprising the animal identity,
record type and sire and dam identities.
2. Type 2 record for each parent in the data comprising the parent iden-
tity, record type, identities for progeny and other parent (mate) if known.
The type 2 records are used for adjusting the contribution of the progeny
to each parent for the mate’s breeding value when solving for animal
solutions.

The pedigree file is sorted by animal and record type. The sorted pedi-
gree file for the example data is given below.

Animal Code Sire or progeny Dam or mate

1 1 0 0
1 2 4 0
1 2 6 2
2 1 0 0
2 2 5 3
2 2 6 1
3 1 0 0
3 2 5 2
3 2 8 6
4 1 1 0
4 2 7 5
5 1 3 2
5 2 7 4
6 1 1 2
6 2 8 3
7 1 4 5
8 1 3 6

Secondly, a data file is set up consisting of animal identity, fixed
effects, covariates and traits. If there is a major fixed effect with many
levels, two data files need to be set up, one sorted by the major fixed
effects, such as herd or herd–year–season (file A), to be used when solv-
ing for the major fixed effect, and the other sorted by animal identity (file
B), to be used to solve for animal solutions. Assuming sex effect to be the
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major fixed effect in the example data, the data sorted by sex are as
follows:

Calf Sexa Weaning weight

4 1 4.5
7 1 3.5
8 1 5.0
5 2 2.9
6 2 3.9

a1 = male, 2 = female.

ITERATION STAGE

Let $b and $a be vectors of solutions for sex and animal effects. Starting
values for sex and animal effects are assumed to be the same as in
Example 13.1.

SOLVING FOR FIXED EFFECTS. In each round of iteration, file A is read one level
of sex effect at a time with adjusted right-hand sides (ARHS) and diago-
nals (DIAG) accumulated for the ith level as:

ARHS ARHSi = + −i ik ky u$
DIAG DIAGi = +i 1

At the end of the ith level, the solution for the level is computed as:

$ /bi i i= ARHS DIAG

The above step essentially involves adjusting the yields for animal effects
using previous solutions and calculating solutions for each level of sex
effect. For example, the solution for level one of the sex effect in the first
round of iteration is:

$b1 [(4.5 0.167) (3.5 ( 0.833)) (5.0 0.667)]/3 4.3= − + − − + − = 33

After calculating solutions for fixed effect in the current round of itera-
tion, file B and the pedigree file are processed to compute animal
solutions.

SOLVING FOR ANIMAL SOLUTIONS. Diagonals (DIAG) and adjusted right-hand
sides (ARHS) are accumulated as data for each animal are read from the
pedigree file or from both pedigree file and file B for animals with records.
When processing type 1 records in the pedigree file for the kth animal, the
contribution to the DIAG and ARHS according to the number of parents
known is as follows:

Solving Linear Equations 269

283
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:26:06 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



Number of parents known

None One (sire(s)) Both

ARHSk = 0 ARHSk = (2
3
) a ( $us) ARHSk = a ( $us + $ud )

DIAGk = a DIAGk = (4
3
) a DIAGk = 2a

where $us and $ud are current solutions for the sire and dam, respectively.
When processing type 2 records in the pedigree file for the kth animal,

the contribution to the DIAG and ARHS according to whether the mate of
animal k is known or not is as follows:

Mate unknown Mate known

ARHSk = ARHSk + (2
3
) a( $uo ) ARHSk = ARHSk + a( $uo − 0.5 $um)

DIAGk = DIAGk + ( 1
3
) a DIAGk = DIAGk + ( 1

2
) a

where $uo and $um are current solutions for the progeny and mate, respec-
tively, of the kth animal. If the kth animal has a yield record:

ARHS ARHSk k ik iy b= + − $

DIAGk = DIAGk + 1

where $bi are current solutions for level i of sex effect.
When all pedigree and yield records for the kth animal have been pro-

cessed, the solution for the animal is computed as:

$uk = ARHS /DIAGk k

For the example data, the solution for animal 5 in the first round of itera-
tion is computed as follows.

Contribution to diagonal from pedigree is:

DIAG5 2 05 500= + =( . ) .a

Accounting for yield record, diagonal becomes:

DIAG5 500 1 600= + =. .

Contribution to right-hand side from yield is:

ARHS5 29 340 05= − = −. . .

Contribution to RHS from parents and progeny (pedigree) is:

ARHS ARHS (5 5 2 7 405= + + −a a$ $ ) ( $ . ( $ ))u + u3 u u
= − + − + − + − − −05 2 0083 0021 2 0833 05 0119. ( . ( . )) ( . . ( . ))
= −2.255
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and:

$ . / . .u5 2255 600 0376= − = −

When all animals have been processed, then the current round of iter-
ation is completed. However, the iteration process is continued for sex
and animal effects until convergence is achieved. The convergence crite-
rion can be defined as in Section 13.2. In this example, solutions were
said to have converged when the sum of squares of differences between
the current and previous solutions divided by the sum of squares of the
current solution was less than 10−7. The solutions for all effects in the first
round of iteration and at convergence at the 20th iteration are as follows:

Solutions

Effects At round 1 At convergence

Sexa

1 4.333 4.359
2 3.400 3.404

Animal
1 0.333 0.098
2 −0.083 −0.019
3 −0.021 −0.041
4 −0.119 −0.009
5 −0.376 −0.186
6 0.392 0.177
7 −0.364 −0.249
8 0.282 0.183

a1 = male, 2 = female.

These solutions are the same as those obtained by direct inversion of the
coefficient matrix in Section 3.1 or iterating on the coefficient matrix in
Section 13.1. However, as stated earlier, the advantage of this method is
that the MME are not set up; therefore memory requirement is minimal
and can be applied to large data sets.

13.3.2 Animal model with groups

Example 13.4
With unknown parents assigned to phantom groups, the procedure is very
similar to that described in Section 13.3.1 above with no groups in the
model except in the manner in which the pedigree file is set up and ani-
mal solutions are computed. Using the same data, parameters and model
as in Example 3.4, the methodology is illustrated below.
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272 Chapter 13

DATA PREPARATION

The pedigree file is set up as described in Section 13.3.1 with ancestors
with unknown parentage assigned to groups. The assignment of unknown
parents for the example pedigree has been described in Section 3.5. How-
ever, there is also an additional column for each animal indicating the
number of unknown parents for each animal.

The pedigree with unknown parents assigned to groups and the addi-
tional column indicating the number of unknown parents is as follows:

Calf Sire Dam
Number of

unknown parents

1 9 10 2
2 9 10 2
3 9 10 2
4 1 10 1
5 3 2 0
6 1 2 0
7 4 5 0
8 3 6 0

and the ordered pedigree for the analysis is:

Animal Code Sire or progeny Dam or mate
Number of

unknown parents

1 1 9 10 2
1 2 4 10 1
1 2 6 2 0
2 1 9 10 2
2 2 5 3 0
2 2 6 1 0
3 1 9 10 2
3 2 5 2 0
3 2 8 6 0
4 1 1 10 1
4 2 7 5 0
5 1 3 2 0
5 2 7 4 0
6 1 1 2 0
6 2 8 3 0
7 1 4 5 0
8 1 3 6 0
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(Continued )

Animal Code Sire or progeny Dam or mate
Number of

unknown parents

9 2 1 10 2
9 2 2 10 2
9 2 3 10 2

10 2 1 9 2
10 2 2 9 2
10 2 3 9 2
10 2 4 1 1

The arrangement of yield data is the same as in Section 13.3.1 in the
animal model analysis without groups.

ITERATIVE STAGE

SOLVING FOR FIXED EFFECTS. This is exactly as described for the animal model
without groups in Section 13.3.1, with yield records adjusted for other
effects in the model and solutions for fixed effects computed.

SOLVING FOR ANIMAL SOLUTIONS. Solutions for animals are computed one at a
time as both pedigree and data file sorted by animals are read, as described
for the animal model without groups. Therefore, only the differences in
terms of the way diagonals and adjusted right-hand sides are accumulated
are outlined.

For the kth animal in the pedigree file, calculate:

w k = +a( /(4 2 no. of unknown parents))

For the type 1 record in the pedigree file for the kth animal:

ARHS ARHSk = + +k s d ku u w( $ $ ) .05

DIAG DIAGk = +k kw

For the type 2 record in the pedigree file for the kth animal:

ARHS ARHSk = + −k o m ku u w( $ . $ ) .05 05

Accumulation of adjusted right sides from the data file is as specified in
Section 13.3.1 in the model without groups.

The solution for the kth animal is computed as ARHSk/DIAGk when
all records for the animal in the pedigree and data file have been read. The
solutions in the first round of iteration and at convergence without and
with constraint on group solutions, as in Example 3.4, are as follows:
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274 Chapter 13

Solutions

Effects At round 1 At convergence At convergencea

Sexb

1 4.333 4.509 5.474
2 3.400 3.364 4.327

Animal
1 0.333 0.182 −0.780
2 −0.083 0.026 −0.937
3 −0.021 −0.014 −0.977
4 −0.119 −0.319 −1.287
5 −0.376 −0.150 −1.113
6 0.392 0.221 −0.741
7 −0.364 −0.389 −1.355
8 0.282 0.181 −0.782
9 0.153 0.949 0.000

10 −0.176 −0.820 −1.795

a With solutions for groups constrained to those in Example 3.4.
b1 = male, 2 = female.

When the solutions for groups are constrained as those in Example 3.4,
this method gives the same solutions obtained in Example 3.4. However,
when there is no constraint on group solutions, the ranking of animals is
the same and linear differences between levels of effects are very similar
to those obtained when group solutions are constrained.

13.3.3 Reduced animal model with maternal effects

The principles of genetic evaluation iterating on the data with a reduced
animal model with maternal effects are illustrated using the same data set,
parameters and model as in Example 6.1. The genetic parameters were:

var

a
m
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e

⎡

⎣
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⎢
⎢
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⎥
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11 12
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⎢
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. .
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⎢
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⎥
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The inverse of the residual variance for parental records is 1 2 1/s e par= =−

0.002857 and for non-parental records is 1 2
11

1/( ) ,s e npdg r+ = − where d = 3/4
or 1/2 when one or both parents are known and the inverse of the variance
due to permanent environmental effect = =1 00252/ .s pe .

DATA ARRANGEMENT

The pedigree file is set up as described in Section 13.3.1 but only for
animals that are parents. The pedigree file for the example data is:

Animal Code Sire or progeny Dam or mate

1 1 0 0
1 2 5 2
1 2 9 6
2 1 0 0
2 2 5 1
2 2 6 3
3 1 0 0
3 2 6 2
3 2 8 5
4 1 0 0
4 2 7 6
5 1 1 2
5 2 8 3
6 1 3 2
6 2 7 4
6 2 9 1
7 1 4 6
8 1 3 5
9 1 1 6

A data file is set up consisting of a code to identify parents and non-
parents. For non-parents, one record is set up for each parent, compris-
ing the parent, a code indicating it is a non-parent, the animal that has
the yield record, the other parent (mate), the sire and dam of the animal
with the yield record, fixed effects, covariates (if any) and traits. A single
record is set up for parents, comprising the animal, a code indicating
that it is a parent, the animal again, a field set to zero corresponding to
the column for the other parent in non-parents’ records, the sire and dam
of the animal, fixed effects, covariates (if any) and traits. The data file may
be sorted in three sequences if there is a major fixed effect in the model:
sorted by major fixed effect, such as herd–year–season (HYS) (file A),
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sorted by animal (file B), and sorted by dam code (file C). For the example,
file A is:

Parent/
animal Codea Animal Mate Sire Dam Herd Sexb

Birth
weight

5 0 5 0 1 2 1 1 35.0
6 0 6 0 3 2 1 2 20.0
7 0 7 0 4 6 1 2 25.0
8 0 8 0 3 5 1 1 40.0
9 0 9 0 1 6 2 1 42.0
3 1 10 2 3 2 2 2 22.0
2 1 10 3 3 2 2 2 22.0
3 1 11 7 3 7 2 2 35.0
7 1 11 3 3 7 2 2 35.0
8 1 12 7 8 7 3 2 34.0
7 1 12 8 8 7 3 2 34.0
9 1 13 2 9 2 3 1 20.0
2 1 13 9 9 2 3 1 20.0
3 1 14 6 3 6 3 2 40.0
6 1 14 3 3 6 3 2 40.0

a0 = Parental record, 1 = non-parental record.
b1 = male, 2 = female.

ITERATION STAGE

The solution vectors for herd ( $hd), sex ( $b), direct animal effect ( $u), genetic
maternal effect ( $m) and permanent environmental effect ( $pe) are initially
set to zero.

SOLVING FOR FIXED EFFECTS. Data file A is read at each round of iteration one
herd at a time with adjusted right-hand sides (ARHS) and diagonals
(DIAG) accumulated for the ith herd as:

ARHS ARHSi = + − − − −−
i pa ijklt j k l tr y b u m pe1( $ $ $ $ )

for parental records [13.10]:

ARHS ARHSi = + − − + − −−
i np ijklt j s d l tr y b u u m pe1 05( $ . ( $ $ ) $ $ )

for non-parent records [13.11]:

DIAG DIAGi = + −
i nr 1

where rn
−1 is the inverse of the residual variance of the nth record being read.

At the end of records for the ith herd, the solution is computed as:

$ /hdi i i= ARHS DIAG
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Solving Linear Equations 277

In the first round of iteration, the solution for the first herd is:
$ [ ( $ $ $ $ ) ( $ $ $ $hd r y b u m pe y b u mpa1 = − − − − + − − − −−1

1 1 5 2 2 2 2 6 2 pe2 )
+ − − − − + − − − −( $ $ $ $ ) ( $ $ $ $ )]/ (y b u m pe y b u m pe rp3 2 7 6 6 4 1 8 5 5 4 a

−1 )
= − − − − + − − − −−[ (( ) ( )rpa

1 35 0 0 0 0 20 0 0 0 0
+ − − − − + − − − − −( ) ( )]/ ( )25 0 0 0 0 40 0 0 0 0 4 1rpa

= 0.3432/0.01144 = 30.00

While reading data file A, adjusted right-hand sides, consisting of yield adjusted
for previous animal, maternal and permanent environmental solutions, are
accumulated for each level of sex effect. Thus, for the jth level of sex effect:

ARHS ARHSj = + − − −−
j pa ijklt k l tr y u m pe1( $ $ $ )

for parent records:

ARHS ARHSj = + − + − −−
j np ijklt s d l tr y u u m pe1 05( . ( $ $ ) $ $ )

and for non-parent records:

DIAG DIAGj = + −
j nr 1

After reading file A, the solution for the j sex class is computed as:

ARHS ARHSj = − −
j ij inr hd1 $

$ /bj j= ARHS DIAGj

where $hdi is the current solution of herd i and nrij
−1 is the sum of the

inverse of the residual variance for records of the jth level of sex effect in
herd i. The latter is accumulated while reading file A. For the example
data, solutions for level 1 of sex effect in the first round of iteration are:

$ ( $ ) ( $ ) ( $ )/[b r hd r hd r hdpa pa np1
1

1
1

2
1

32 2 3= − − −− − −ARHS1 r rpa np
− −+1 12 ]

= − − −− − −038134 2 300 33638 2 313331 1 1. ( . ) ( . ) ( . )r r rpa pa np / .001092
= 3.679

After obtaining solutions for fixed effects in the current round of iteration,
the solutions for animals are solved for.

SOLVING FOR ANIMAL SOLUTIONS . As described in Section 13.3.1, animal solu-
tions are computed one at a time as the pedigree file and file B are read.
Briefly, for a type 1 record in the pedigree file for the kth animal, contribu-
tions to DIAG and ARHS according to the number of parents known [13.8]
are:

Number of parents known

None One (sire(s)) Both

ARHSk � 0 ARHSk � 2
3
g11(ûs) ARHSk � g11(ûs + ûd)

DIAGk � g11 DIAGk � 4
3
g11 DIAGk � 2g11
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278 Chapter 13

where $us and $ud are current solutions for direct effects for the sire and dam
of the animal k.

The adjusted right-hand side is augmented by contributions from the
maternal effect as a result of the genetic correlation between animal and
maternal effects. These contributions are from the sire, dam and the kth
animal (see equation [13.9]), and these are:

Number of parents known

None One (sire(s)) Both

– ARHS ARHSk k=
+ ( 12$ )m gs

2
3

ARHS ARHSk k=
+ +( 12$ $ )m m gs d

ARHS ARHSk k=
− ( ) 12$m gk

ARHS ARHSk k=
− ( ) 4

3
12$m gk

ARHS ARHSk k=
− ( $ )m gk

22 1

where $ms , $md and $mk are current maternal solutions for the sire and dam
of animal k, respectively.

In processing a type 2 record in the pedigree file for the kth animal,
contributions to DIAG and ARHS according to whether the mate of k is
known are:

Mate is unknown Mate is known

ARHS ARHS 11
k k og u= + 2

3
( $ ) ARHS ARHS 11

k k mau u g= + −( $ . $ )o 0 5
DIAG DIAG 11

k k g= + 1
3

DIAG DIAGk k g= + 1
2

11

where ûo and ûma are current solutions for direct effects for the progeny
and mate of the animal k.

Accounting for contributions from the maternal effect to ARHS:

Mate is unknown Mate is known

ARHS ARHS 2
3

12
k k g= + ( $ )mo ARHS ARHS ( 0.5k k mam g= + −$ $ )o m 12

ARHS ARHS 2
k k km g= − ( $ ) 1

3
1 ARHS ARHS ( ) 1

2
12

k k km g= − $

where $mo and $mma are current maternal solutions for the progeny and
mate of the animal k.

If the animal has a yield record:

DIAG DIAGk = + −
k nr 1 if it is a parent

or:

DIAG DIAG 0.5k = + −
k nr( )1 if it is a non-parent
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The diagonals of non-parents are multiplied by 0.5 instead of 0.25 because
records of non-parents have been written twice (see Section 13.3).

Contributions to the right-hand side are accumulated as:

ARHS ARHSk = + − − − −−
k pa ijklt i j l tr y hd b m pe1( $ $ $ $ )

for parent records and:

ARHS ARHSk = + − − − − −−
k np ijklt i j ma lr y hd b u m p1 05( $ $ . ( $ ) $ $et )

for non-parent records. In the equations above $ , $ , $ , $hd b m pei j l t and $uma
are current solutions for herd i, jth level for sex effect, lth maternal effect
level, tth level of permanent environment effect and animal solution for
the other parent (mate), respectively. The solution for animal k is com-
puted as usual when all records for the animal in the pedigree and data
file have been read as:

$ /uk k= ARHS DIAGk

The solution for animal 2 in the example data in the first round of itera-
tion is as follows.

The contribution to the diagonal from pedigree is:

DIAG2
1
2

1
21 000756 001512= + + =( ) . .

The contribution to the diagonal from yield is:

DIAG DIAG2 2 2 000059 001512 000118 00163= + = + =( . ) . . .

The contributions to ARHS from the pedigree (both parents are known)
and from its progeny are zero in the first round of iteration. The contribu-
tion to ARHS from yield record is:

ARHS2
1

10 2 2 3 3 3= − − − − −−r y hd b u m penp ( $ $ $ $ $ )
+ − − − − −−r y hd b u m penp

1
13 3 1 9 2 2( $ )

ARHS2 = − − − − − −−rnp
1 22 2567 33600 0 0 0( ( . ) . )

+ − − = −−rnp
1 20 3679 31333 002818( . . ) .

Therefore:

$ . / . .u2 002818 00163 1729= − = −

After processing all animals in the pedigree and data file in the current
round of iteration, equations for maternal effects are set and solved as
described below.

SOLVING FOR MATERNAL EFFECT. Solutions for maternal effects are computed
using both the pedigree file and the data file sorted by dam. Records for
the lth animal are read in from the pedigree file and from file C if it is a
dam that has progeny with a yield record, while accumulating diagonals
(DIAG) and adjusted right-hand sides (ARHS). For the type 1 record in the
pedigree file for animal l, contributions to ARHS and DIAG according to the
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number of parents known are as follows:

Number of parents known

None One (dam(d)) Both

ARHS 0l = ARHS ( )2
3

22
l = g md$ ARHS ( )22

l s dg m m= +$ $

DIAG 22
l g= DIAG 4

3
22

l g= DIAG 2 22
l g=

Taking into account contributions from animal effects to the ARHS
due to the genetic correlation gives:

Number of parents known

None One (dam(d)) Both

– ARHS ARHSl l=
+ ( ) 2

3
12$u gd

ARHS ARHSl l=
+ +u u gs d( ) 12$ $

ARHS ARHS ( )l l lu g= − $ 12 ARHS ARHSl l=
− ( ) 4

3
12$u gl

ARHS ARHSl l=
− ( $ )u gl 2 12

For the type 2 record in the pedigree file for animal l, contributions to the
ARHS and DIAG according to whether the mate of animal l is known or not are:

Mate is unknown Mate is known

ARHS ARHS ( ) ( )2
3

22
l l og m= + $ ARHS ARHS ( 0.5 )22

l l o mag m m= + −$ $

DIAG DIAG ( )1
3

22
l l g= + DIAG DIAG ( )1

2
22

l l g= +

Taking into account contributions from animal effect (see equation [13.9])
gives:

Mate is unknown Mate is known

ARHS ARHS 2
3

12
0l l= + g u( $ ) ARHS ARHS ( 0.5 ) 12

l l= + −$ $u u go ma

ARHS ARHS ( )( )1
3

12
l l lu g= − $ ARHS ARHS ( )( )1

2
12

l l lu g= − $

For the l animal which is a dam with progeny having yield records,
diagonals and adjusted right-hand sides from pedigree are augmented
with information from yield as:

DIAG DIAG= + −rn
1
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and:

ARHS ARHSl = + − − − −−
l pa ijklt i j k tr y hd b u pe1( $ $ $ $ )

for parent records and:

ARHS ARHSl = + − − − + −−
l np ijklt i j s dr y hd b u u pe1 05( $ $ . ( $ $ ) $ t )

for non-parent records.
After processing all records from pedigree and yield records for the lth

animal, the solution for the maternal effect is computed as:

ml l= ARHS DIAG/ l

The calculation of the solution for animal 5 in the first round of itera-
tion is as follows:

The contribution from type 1 record in the pedigree is:

ARHS5 1 2
22

1 2
12

5
122= + + + −( $ $ ) ( $ $ ) ( $ )m m g u u g u g

= + − + + −( . ( . )) . ( ( . )) .00217 17027 001261 0 17294 000336

− − = −(( . )( ) . ) .05831 2 00336 002309

DIAG5 = (2)0.01261 = 0.02522

The contribution from type 2 record in the pedigree is:

ARHS ARHS5 5 8
1
2 3

22
8

1
2 3

12
5

1
2

1= + − + − −( $ $ ) ( $ $ ) ( $m m g u u g u g 2 )
= − + −002309 0 04587 0012611

2. ( ( . )) .
+ − − −( . ( . )) . (( . )( ) . )14382 08960 000336 05831 0003361

2
1
2

= −0021675.

DIAG DIAG5 5
1
2

22 002522 00063 003153= + = + =g . . .

The contribution from yield of progeny (animal 8) to dam 5 is:

ARHS ARHS5 5
1

8 1 1 8 5= + − − − −−r y hd bf u pepa ( $ $ $ $ )

= 0.021675 +− − − − −−rpa
1 40 3000 3679 14382 0( . . ( . ) )

= −0007724.

DIAG DIAG5 5
1 003153 0002857 0034387= + = + =−rpa . . .

and the solution is:

$ . / . .m5 0007724 0034387 0225= − = −

Solutions for permanent environmental effects are solved for after pro-
cessing all animals for maternal effects in the current round of iteration.

SOLVING FOR PERMANENT ENVIRONMENTAL (pe) EFFECTS. Only the data file sorted by
dams is required to obtain solutions for pe effects.
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The records for the tth dam are read from file C while adjusted right-hand
sides and diagonals are accumulated as:

ARHS ARHSt = + − − − −−
t pa ijklt i j k lr y hd b u m1( $ $ $ $ )

for parent records and:

ARHS ARHSt = + − − − + −−
t np ijklt i j s d lr y hd b u u m1 05( $ $ . ( $ $ ) $ )

for non-parent records.

DIAG DIAGt t nr= + −1

At the end of records for the tth dam, solutions are computed as:

$ /( / )pet t= ARHS DIAGt pe+ 1 2s

The solution for permanent environmental effect for animal 5 in the first
round of iteration is:

ARHS5
1

8 1 1 8 5= − − − −−r y hd b u mpa ( $ $ $ $ )

= − − − − −−rpa
1 400 3679 300 14822 02246( . . . . ( . ))

= 001459.
DIAG5

1 0025 002786= + =−rpa . .

and:

pe5 001459 002786 0524= =. / . .

Further iterations are carried out until convergence is achieved. The conver-
gence criteria defined in Section 13.2.1 could also be used. The solutions for
the first round of iteration and at convergence are shown below:

Solutions

Effects At round 1 At convergence

Herd
1 30.000 30.563
2 33.600 33.950
3 31.333 31.997

Sexa

1 3.679 3.977
2 −2.657 −2.872

Animal
1 0.000 0.564
2 −1.729 −1.246
3 0.896 1.166
4 0.000 −0.484
5 −0.583 0.630
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(Continued)

Solutions

Effects At round 1 At convergence

6 −0.554 −0.859
7 −0.020 −1.156
8 1.438 1.918
9 −0.396 −0.553

Maternal
1 0.022 0.261
2 −1.703 −1.582
3 0.459 0.735
4 0.046 0.586
5 −0.225 −0.507
6 0.425 0.841
7 0.788 1.299
8 −0.224 −0.158
9 0.255 0.659

Permanent environment
2 −1.386 −1.701
5 0.524 0.415
6 0.931 0.825
7 0.527 0.461

a1 = male, 2 = female.

These solutions are exactly the same as those obtained in Section 6.2 by
directly inverting the coefficient matrix.

BACK-SOLVING FOR NON-PARENTS

The solutions for direct animal and maternal effects for non-parents are
calculated after convergence has been achieved, as described in Section
6.2. The solutions for non-parents for this example have been calculated
in Section 6.2.

13.4 Preconditioned Conjugate Gradient Algorithm

Berger et al. (1989) investigated the use of a plain or Jacobi conjugate gra-
dient (CG) iterative scheme for solving MME for the prediction of sire
breeding values. They indicated that plain CG was superior to a number of
other iterative schemes, including Gauss–Seidel. Strandén and Lidauer
(1999) implemented the use of the preconditioned conjugate gradient
(PCG) in genetic evaluation models for the routine evaluation of dairy cat-
tle with very large data. In the PCG method, the linear system of equations
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(equation [13.1], for instance) is made simpler by solving an equivalent
system of equations:

M Cb M r− −=1 1

where M is a symmetric, positive definite, preconditioner matrix that
approximates C and r is the right-hand side. In the plain CG method, the
preconditioner M is an identity matrix.

The implementation of the PCG method requires storing four vectors of
size equal to the number of unknowns in the MME: a vector of residuals (e),
a search-direction vector (d), a solution vector (b) and a work vector (v). The
PCG method can be implemented with less memory by storing the solution
vector on disk and reading it in during the iteration. The pseudo-code for the
PCG method (Lidauer et al., 1999) is outlined below, assuming that starting
values are:

b e r Cb r d M e M r1 1(0) (0) (0) (0) (0)0, ,= = − = = =− −

For k = 1,2, … , n:

v Cd= −( )k 1

w = ′ ′− − − −e M e d v( ) ( ) ( )/( )k k k1 1 1 1

b b d( ) ( ) ( )k k k= +− −1 1w

e e v( ) ( )k k= −−1 w

v M e= −1 ( )k

b = ′ ′ − − −e v/ e M e( ) ( ) ( )( )k k k1 1 1

d v d( ) ( )k k= −+ b 1

If not converged, continue iteration until converged. End where w and b
are step sizes in the PCG method.

13.4.1 Computation strategy

The major task in the PCG algorithm above is calculating Cd, where C is
the coefficient matrix of the MME. The vector d is the search direction
vector and every iteration of the PCG minimizes the distance between the
current and the true solutions in the search direction. Strandén and
Lidauer (1999) presented an efficient computation strategy for computing
Cd for a multivariate model. Assuming, for instance, that data are ordered
by animals, the MME for the multivariate model (equation [5.2]), can be
written as:

x R x x R z

z R x z R z

i i i
i

N

i i i
i

N

i i i
i

N

i i

−

=

−

=

−

=

−

′ ′

′ ′

∑ ∑

∑

1

1

1

1

1

1

1 + ⊗

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
− −

=

−

∑ A G

b

a

x R y

1 1

1

1

i

N

i i

i
$

$

i
i

N

i i i
i

N
=

−

=

∑

∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

1

1

z R y
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where N is the number of animals with records, ′x i and ′z i are matrices
having rows equal to the number of traits observed on animal i. Denote

′ = ′ ′w x z[ ]i i and V as:

V
A G

=
⊗

⎡

⎣
⎢

⎤

⎦
⎥

0 0
0

Computing Cd then implies calculating:

w R w d V d v vi i i i d
i

N

i

N
− −

==
′ + = ∑∑ 1 1

11

+ [13.13]

If solving the MME with iteration on the data for a univariate model with-
out any regression effects, this calculation can be achieved by accumulat-
ing, for each individual i, the product vi = Tid, where the coefficients in
T w R wi i i i= ′−1 can be deduced without performing any of the products, as
wi contains zeros and ones only and R i

−1 is a scalar or R i
−1 is factored out

(equation [3.4]). For a multivariate model, the principles for computing Ti

are essentially the same but with scalar contributions replaced by matrix
Ri. Strandén and Lidauer (1999) suggested the following three-step method
for calculating the product w R d1

i i
− :

s w d s R s v w si i i i i i i i← ′ ← ←−; ;* *1

where vectors si and s i
* are of size equal to the number of traits observed

on individual i (li). They demonstrated that this three-step approach sub-
stantially reduced the number of floating point operations (multiplications)
compared with a multivariate accumulation technique, as used by
Groeneveld and Kovac (1990). For instance, given that qi is the number of
effects over traits observed for individual i, the number of floating point
operations were 720 with li = 3 and qi = 15 using the multivariate
accumulation technique, compared with 78 with the three-point approach.
They also suggested that v V dd = −1 in equation [13.13] can be evaluated in
a two-step approach:

x I A d v G I x← ⊗ ← ⊗− −( ; ( )1 1) d

13.4.2 Numerical application

The application of PCG to solve MME is illustrated using data for Example
3.1 in Chapter 3 for a univariate model and iterating on the data.

Computing starting values

Initially, the pedigree is read and diagonal elements of A −1multiplied by a
are accumulated for animals, where the variance ratio a is 2, as in Example
3.1. This is straightforward and has not been illustrated, but elements for
animals 1 to 8 stored in a vector h are:

h′ = [ . . . . . . . . ]3667 40 40 3667 50 50 40 40
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Secondly, read through the data as shown in Table 3.1 and accumulate
right-hand side (r) for all effects, diagonals for the levels of sex of calf effect
and add contribution of information from data to diagonals from A −1a for
animals. Assuming that diagonals for all effects are stored as diagonal ele-
ments of M, such that the first two elements are for the two levels of sex of
calf effect and the remaining elements for animals 1 to 8, then r and M are:

r′ = [ . . . . . . . . . . ]130 68 00 00 00 45 29 39 35 50

and:

M = diag[3.0 2.0 3.667 4.0 4.0 4.667 6.0 6.0 5.0 5.0]

The starting values for PCG can now be calculated. Thus:

b e r Cb y d M r( ) ( ) ( ) ( ), and0 0 0 0 10= = − = = −

Thus:

d( ) [ . . . . . . . . . . ]0 4333 34 00 00 00 0964 0483 0650 070 10′ =

Iterative stage

Reading through the data and performing the following calculatons in
each round of iteration start the PCG iterative process. Calculations are
shown for the first round of iteration.

The vector v � Cd is accumulated as data are read. For the ith level of
fixed effect:

v v d d( ) ( ) ( ( )) ( ( ))i i i k= + +1 1 anim

where animk refers to the animal k associated with the record. Thus for the
level 1 of sex of calf effect:

v d d d( ) ( . ) ( ) ( ) ( ) .1 3 4333 156634 7 8= + + + =anim anim anim

As each record is read, calculate:

z = 4/(2 + number of unknown parents for animal with record)
xx z= − 05. ( )a if either parent is known, otherwise xx = 0
xm z= 025. ( )a if both parents are known, otherwise xm = 0

If only one parent, p, of animal k is known, then accumulate:

v v d M d d( ) ( ) ( ( )) ( )) ( (anim anim ( animk k ki xx anim= + + +1 k,k p )) [13.14]

where d(i) refers to the ith element of the ith level of the fixed effect and
Mk,k the diagonal element of M for animal k.

Accumulate the contribution to the known parent, p, of k at the
same time:

v(animp) = v(animp) + xx(d(animk))

If both parents p and j of animal k are known, then accumulate for animal k as:

v v d M d( ) ( ) ( ( )) ( ))anim anim ( animk k ki= + +1 k,k

+ +xx p j( ( ) ( ))d danim anim [13.15]
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Accumulate for both parents as:

v v d( ) ( ) ( ( ))anim anim animp p kxx= +
v v d( ) ( ) ( ( ))anim anim animp p jxm= +
v v d( ) ( ) ( ( ))anim anim animj j kxx= +
v v d( ) ( ) ( ( ))anim anim animj j pxm= +

After processing all animals with records, the contribution for ani-
mals in the pedigree without records is accumulated. The equations for
accumulating contributions for these animals is the same as shown above
except that the coefficient for d(i) in equations [13.14] and [13.15] is zero
instead of one, indicating no contribution from records.

For example, for animal 4 with only the sire known:

v v d M d d( ) ( ) ( ) ( )) ( / ) ( ( )) .4 4 1 2 3 84 1= + + + − =4,4 ( anim anima 833

Add contribution from progeny when processing the record for animal 7:

v d d( ) . . ( ( )) . ( )) .4 8833 10 025 79177 5= + − + =a aanim ( anim

The vector v for all effects is:

v′ = − − −[ . . . . . . . . .15664 7933 2586 2267 2317 7917 5864 5300 4938 8033. ]

Next w is computed using matrix multiplication and scalar division as:

w = =951793 120225 07915. / . .

The solution vector is then computed as b b d( ) ( ) ( )1 0 0= + w . The vector b(1) is:

b′ =( ) [ . . . . . . . . . .1 3430 2691 00 00 00 0763 0383 0514 0554 0791]

The updated vector of residuals e(1) is computed as e v( )0 − w . For the example
data, e(1) is:

e′ = − − −( ) [ . . . . . . . .1 0602 0521 2047 1794 1834 1766 1741 0295 − −0408 1358. . ]

The vector v is then computed as M e−1 1( ). For the example data, v is:

′ = − − − −v [ . . . . . . . . .0201 0260 0558 0449 0458 0378 0290 0049 0082 0272− . ]

Next, compute the scalar b. The denominator of b is equal to the
numerator of w and this has already be computed. Using the example data:

b = =4634 95179 00487. / . .

Finally, d(1), the search-direction vector for the next iteration is com-
puted as v d+ b ( )0 . This vector for the example data is:

d′ = − − −( ) [ . . . . . . . .1 0412 0426 0558 0449 0458 0331 0267 0017 − −0048 0223. . ]

The next cycle of iteration is continued until the system of equations
converges. Convergence can be monitored using either the criteria defined
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in Example 13.1 or the relative difference between the right-hand and
left-hand sides:

cd
r

r
( )

( )

=
− +y Cb

y

1

where:

X =
⎛

⎝
⎜

⎞

⎠
⎟∑ x i

i

2

1
2

Using the convergence criteria used in Example 13.1, the iteration was
stopped at the tenth iteration when equations converged to 8.3–07. Some
intermediary and final solutions are shown in the following table:

Iteration number

Effects 1 3 5 7 10

Sex of calf a

1 3.430 3.835 4.280 4.367 4.359
2 2.691 3.122 3.154 3.377 3.404

Animal
1 0.000 0.475 0.170 0.092 0.098
2 0.000 0.224 0.116 0.012 −0.019
3 0.000 0.272 0.058 −0.056 −0.041
4 0.763 0.390 0.032 −0.029 −0.009
5 0.383 0.249 −0.072 −0.155 −0.186
6 0.514 0.547 0.435 0.194 0.177
7 0.554 0.193 −0.178 −0.231 −0.249
8 0.791 0.537 0.334 0.171 0.183

a1 = male, 2 = female.

The equations converged at the tenth round of iteration compared with
20 iterations on the data in Example 13.3.
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Appendix A: Introductory
Matrix Algebra

The basic elements of matrix algebra necessary for the understanding of the
principles for the prediction of breeding values are briefly covered in this
appendix. Little or no previous knowledge of matrix algebra is assumed. For
a detailed study of matrix algebra, the reader should see Searle (1982).

A.1 Matrix: a Definition

A matrix is a rectangular array of numbers set in rows and columns. These
elements are called the elements of a matrix. The matrix B, for instance,
consisting of two rows and three columns, may be represented as:

B = ⎡

⎣
⎢

⎤

⎦
⎥

b b b

b b b
11 12 13

21 22 23

or:

B = ⎡

⎣
⎢

⎤

⎦
⎥

2 4 5
6 8 9

The element bij is called the ij element of the matrix, the first subscript
referring to the row the element is in and the second to the column. The
order of a matrix is the number of rows and columns. Thus a matrix of r
rows and c columns has order r � c (read as r by c). The matrix B above is
of the order 2�3 and can be written as B2�3.

A matrix consisting of a single row of elements is called a row vector.
A row vector consisting of three elements may be represented as:

c = −[ ]2 6 4

Only one subscript is needed to specify the position of an element in a row
vector. Thus the ith element in the row vector c above refers to the element
in the ith column. For instance, c3 4= − .

Similarly, a matrix consisting of a single column is called a column
vector. Again, only one subscript is needed to specify the position of an
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element, which refers to the row the element is in, since there is only one
column. A column vector d with four elements can be shown as below:

d =

−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

20
60

8
2

A scalar is a matrix with one row and one column.

A.2 Special Matrices

A.2.1 Square matrix

A matrix with an equal number of rows and columns is referred to as a
square matrix. Shown below is a square matrix G of order 3 3× .

G =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 1 6
4 2 7
0 4 8

The ij elements in a square matrix with i equal to j are called the diagonal
elements. Other elements of the square matrix are called off-diagonal or
non-diagonal elements. Thus the diagonal elements in the G matrix above
are 2, 2 and 8.

A.2.2 Diagonal matrix

A square matrix having zero for all of its off-diagonal elements is referred
to as a diagonal matrix. For example, a diagonal matrix B can be shown as
below:

B =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 0 0
0 4 0
0 0 18

When all the diagonal elements of a diagonal matrix are one, it is referred
to as an identity matrix. Given below is an identity matrix, I:

I =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A.2.3 Triangular matrix

A square matrix with all elements above the diagonal being zero is called
a lower triangular matrix. When all the elements below the diagonal

290 Appendix A

304
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:26:27 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



are zeros, it is referred to as an upper triangular matrix. For instance, the
matrices D, a lower triangular matrix and E, an upper triangular matrix,
can be illustrated as below:

D E=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4 0 0
1 3 0
2 7 9

3 9 1
0 4 8
0 0 6

;

The transpose (see A.3.1) of an upper triangular matrix is a lower triangu-
lar matrix and vice versa.

A.2.4 Symmetric matrix

A symmetric matrix is a square matrix with the elements above the diago-
nal equal to the corresponding elements below the diagonal, that is,
element ij is equal to element ji. The matrix A below is an example of a
symmetric matrix:

A =
−

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 4 0
4 6 3
0 3 7

In the above matrix, note that:

a a12 21 4= = −

a a13 31 0= =

a a23 32 3= =

A.3 Basic Matrix Operations

A.3.1 Transpose of a matrix

The transpose of a matrix A is usually written as A A′or T, is the matrix
whose ji elements are the ij elements of the original matrix, that is, ′ =a aji ij .
In other words, the columns of A′ are the rows of A and the rows of A′ the
columns of A. For instance, the matrix A and its transpose A′ are illustrated
below:

A A=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′ = ⎡

⎣
⎢

⎤

⎦
⎥

3 2
1 1
4 0

3 1 4
2 1 0

;

Note that A is not equal to A′ but the transpose of a symmetric matrix is
equal to the symmetric matrix. Also (AB BA)′ = ′ ′, where AB refers to the
product (see A.3.3) of A and B.
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A.3.2 Matrix addition and subtraction

Two matrices can be added together only if they have the same number of
rows and columns, that is, they are of the same order and they are said to
be conformable for addition. Given that W is the sum of the matrices X
and Y, then w x yij ij ij= + . For example, if X and Y, both of order 2 2× ,
are as illustrated below,

X Y=
−

⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥

40 10
39 25

2 20
4 40

;

Then the matrix W, the sum of X and Y, is:

W =
+ − +

+ − +
⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥

40 2 10 20
39 4 25 40

38 30
43 15

( )

Matrix subtraction follows the same principles used for matrix addition.
If B X Y= − = −, then b x yij ij ij . Thus the matrix B obtained by subtract-
ing Y from X above is:

B X Y= − =
− − −

− − −
⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢

⎤

⎦

40 2 10 20
39 4 25 40

42 10
35 65

( )
⎥

A.3.3 Matrix multiplication

Two matrices can be multiplied only if the number of columns in the first
matrix equals the number of rows in the second. The order of the product
matrix is equal to the number of rows of the first matrix by the number of
columns in the second. Given that C AB= , then:

C = =
===
∑∑∑c a bij ik kj
k

z

i

n

j

m

111

where m = number of columns in B, n = number of rows in A and z =
number of rows in B. Let:

A B=
−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 4 1
2 5 0
3 6 1

2 5
4 3
6 1

;

Then C can be obtained as:

C 11 12 4 4 16= + + − =( ) ( ) ( ) 12 (row 1 of A multiplied by column 1 of B)
C 21 2 2 5 4 0 6= + + =( ) ( ) ( ) 24 (row 2 of A multiplied by column 1 of B)
C 31 3 2 6 4 16 36= + + =( ) ( ) ( ) (row 3 of A multiplied by column 1 of B)
C 12 15 4 3 1 1 16= + + − =( ) ( ) ( ) (row 1 of A multiplied by column 2 of B)
C 22 2 5 5 3 0 1 25= + + =( ) ( ) ( ) (row 2 of A multiplied by column 2 of B)
C 32 3 5 6 3 1 1 34= + + =( ) ( ) ( ) (row 3 of A multiplied by column 2 of B)

C =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

12 16
24 25
36 34
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Note that C has order 3 2× , where 3 equals the number of rows of A and 2
the number of columns in B. Also note that AB is not equal to BA, but
IA AI A= = where I is an identity matrix. If M is the product of a scalar g
and a matrix B, then M = b gij ; that is, each element of M equals the corre-
sponding element in B multiplied by g.

A.3.4 Direct product of matrices

Given a matrix G of order n by m and A of order t by s, the direct product is:

G A
A A
A A

⊗ = ⎡

⎣
⎢

⎤

⎦
⎥

g g

g g
11 12

21 22

The direct product is also known as the Kronecker product and is of the
order nt by ms. For instance, assuming that:

G A= ⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

10 5
5 20

1 0 2
0 1 4
2 4 1

and

the Kronecker product is:

G A⊗ =

10 0 20 5 0 10
0 10 40 0 5 20

20 40 10 10 20 5
5 0 10 20 0 40
0 5 20 0 20 80

10 20 5 20 80 20

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

The Kronecker product is useful in multiple trait evaluations.

A.3.5 Matrix inversion

An inverse matrix is one which, when multiplied by the original matrix,
gives an identity matrix as the product. The inverse of a matrix A is usually
denoted as A −1 and, from the above definition, A A I− =1 , where I is an
identity matrix. Only square matrices can be inverted and for a diagonal
matrix the inverse is calculated simply as the reciprocal of the diagonal
elements. For instance, the diagonal matrix B and its inverse are:

B B=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥−

3 0 0
0 4 0
0 0 18

0 0
0 0
0 0

1

1
3

1
4

1
18

and ⎥
⎥

For a 2 2× matrix, the inverse is easy to calculate and is illustrated
below. Let:

A = ⎡

⎣
⎢

⎤

⎦
⎥

a a

a a
11 12

21 22
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First, calculate the determinant, which is the difference between the
product of the two diagonal elements and the two off-diagonal elements
( )a a a a11 22 12 21− . Secondly, the inverse is obtained by reversing the diago-
nal elements, multiplying the off-diagonal elements by −1 and dividing
all elements by the determinant. Thus:

A − =
−

−
−

⎡

⎣
⎢

⎤

⎦
⎥1

11 22 12 21

22 12

21 11

1
a a a a

a a

a a

For instance, given that:

A = ⎡

⎣
⎢

⎤

⎦
⎥

8 4
6 4

A − =
−

−
−

⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡1 1
8 4 6 4

4 4
6 8

050 050
075 100( )( ) ( )( )

. .

. .⎣
⎢

⎤

⎦
⎥

Note that A A I AA− −= =1 1, as stated earlier. Calculating the inverse of
a matrix becomes more cumbersome as the order increases and inverses
are usually obtained using computer programs. The methodology has not
been covered in this text. It is obvious from the above that an inverse of a
non-diagonal matrix cannot be calculated if the determinant is equal to
zero. A square matrix with a determinant equal to zero is said to be singular
and does not have an inverse. A matrix with a non-zero determinant is
said to be non-singular.

Note that ( )AB B A− − −=1 1 1. The inverses of matrices may be required
when solving linear equations. Thus, given the following linear equation:

Ab y=

premultiplying both sides by A −1 gives the vector of solutions b as:

b A y= −1

A.3.6 Rank of a matrix

The rank of a matrix is the number of linearly independent rows or col-
umns. A square matrix with the rank equal to the number of rows or col-
umns is said to be of full rank. In some matrices, some of the rows or
columns are linear combination of other rows or columns, therefore the
rank is less than the number of rows or columns. Such a matrix is not of
full rank. Consider the following set of equations:

3 2 11 2 3 1x x x y+ + =
4 3 01 2 3 2x x x y+ + =
7 5 11 2 3 3x x x y+ + =

The third equation is the sum of the first and second equations; therefore the
vector of solutions, x x( [ ])′ = x x x1 2 3 , cannot be estimated due to the lack
of information. In other words, if the system of equations were expressed in
matrix notation as:

Dx y=
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that is, as:

3 2 1
4 3 0
7 5 1

1

2

3

1

2

3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
x

x

x

y

y

y
⎥
⎥

a unique inverse does not exist for D because of the dependency in the
rows. Only two rows are linearly independent in D and it is said to be of
rank 2, usually written as r( )D = 2. When a square matrix is not of full
rank, the determinant is zero and hence a unique inverse does not exist.

A.3.7 Generalized inverses

While an inverse does not exist for a singular matrix, a generalized
inverse can, however, be calculated. A generalized inverse for a matrix D
is usually denoted as D− and satisfies the expression:

DD D D− =

Generalized inverses are not unique and may be obtained in several ways.
One of the simple ways to calculate a generalized inverse of a matrix, say
D in Section A.3.6, is to initially obtain a matrix B of full rank as a subset
of D. Set all elements of D to zero. Calculate the inverse of B and replace
the elements of D with corresponding elements of B and the result is D− .
For instance, for the matrix D above, the matrix B, a full-rank subset of D,
is:

B B= ⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢

⎤

⎦
⎥−3 2

4 3
3 2
4 3

1and

Replacing elements of D with the corresponding elements of B after all
elements of D have been set to zero gives D− as:

D− =
−

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 2 0
4 3 0
0 0 0

A.3.8 Eigenvalues and eigenvectors

Eigenvalues are also referred to as characteristic or latent roots and are
useful in simplifying multivariate evaluations when transforming data.
The sum of the eigenvalues of a square matrix equals its trace (sum of the
diagonal elements of a square matrix) and their product equals its determi-
nant (Searle, 1982). For symmetric matrices, the rank equals the number of
non-zero eigenvalues.

For a square matrix B, the eigenvalues are obtained by solving:

|B I|− =d 0

where the vertical lines denote finding the determinant.
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With the condition specified in the above equation, B can be repre-
sented as:

BL LD=

B LDL= −1 [a.1]

where D is a diagonal matrix containing the eigenvalues of B, and L is a matrix
of corresponding eigenvectors. The eigenvector (k) is found by solving:

( )B I− =d lk k 0

where dk is the corresponding eigenvalue.
For symmetric matrices L is orthogonal (that is, L L LL I L L− = ′ ′ = = ′1 ; );

therefore, given that B is symmetric, [a.1] can be expressed as:

B LDL= ′

Usually eigenvalues and eigenvectors are calculated by means of computer
programs.
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Appendix B: Fast Algorithms for
Calculating Inbreeding Based on
the L Matrix

In this appendix, two algorithms based on the L matrix for calculating
inbreeding are discussed.

B.1 Meuwissen and Luo Algorithm

The algorithm given by Quaas (1976) involves the calculation of one col-
umn of L at a time. The algorithm requires n n( )/+ 1 2 operations and com-
putational time is proportional to n2, where n is the size of the data set. It
suffers from the disadvantage of not being readily adapted for updating
when a new batch of animals is available without restoring a previously
stored L. Meuwissen and Luo (1992) presented a faster algorithm which
involves computing the elements of L row by row.

The fact that each row of L is calculated independently of other rows
makes it suitable for updating. The row i of L for animal i gives the fraction
of genes the animal derives from its ancestors. If si and di are the sire and
dam of animal i, then l lis idi i

= = 05. . The ith row of L can be calculated by
proceeding through a list of i’s ancestors from the youngest to the oldest
and updating continually as l l lis is ijj j

= + 05. and l l lid id ijj j
= + 05. , where j

is an ancestor of i. The fraction of genes derived from an ancestor is:

l lij ik
k j

= ∑05.
eP

where Pj is a set of identities of the progeny of j. However l ij = 0 only
when k is not an ancestor of i or k is not equal to i. Thus, if AN is the set of
identities of the number of ancestors of i, then:

l lij ik
k j

=
∩

∑05.
eAN P

that is, the summation of 0.5lik is over those k animals that are both ances-
tors of i and progeny of j. This forms the basis of the algorithm given below
for the calculation of the row i of L, one row at a time. As each row of L is
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calculated, its contribution to the diagonal elements of the relationship
matrix (aii) is accumulated. Initially, set row i of L and aii to zero. The list
of ancestors whose contributions to aii are yet to be included are added to
the vector AN (if not already there) as each row of L is being processed.

The algorithm is:

F0 1= −

For i N= 1, (all rows of L):

AN i i=
l ii = 1
D ii s dF F

i i
= − +[ . . ( )05 025 ], if both parents are known; otherwise use

appropriate formula (see Chapter 2, Section 2.2).

Do while ANi is not empty.

j ji i= =max( )( )AN ANyoungest animal in

If sj is known, add sj to ANi:

l l lis is ijj j
= + 05.

If dj is known, add dj to ANi:

l l lid id ijj j
= + 05.

a a lii ii ij jj= + +2 D

Delete j from ANi.
End while:

F ai ii= − 1

B.1.1 Illustration of the algorithm

Using the pedigree in Table 2.1, the algorithm is illustrated for animals 1
and 5.

For animal 1:

a11 0=
AN 1 111 1= =, l

Since both parents are unknown:

D11 1=

Processing animals in AN1:

j = =max( )AN 1 1

Both parents of j are unknown:

a a l11 11 11
2

11
21 1 1= + = =D ( )

Delete animal 1 from AN1; AN1 is now empty.

F1 1 1 0= − =
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For animal 5:

a55 0=
AN5 555 1= =, l

D55 05= . , since neither parent is inbred.

Processing animals in AN5:

j = max(AN5) = 5

Add sire and dam of 5 (animals 4 and 3) to AN5:

l l l54 54 5505 05= + =. .
l l l53 53 5505 05= + =. .
a a l55 55 55

2
55

21 05 05= + = =D ( . ) .

Delete animal 5 from AN5; animals 4 and 3 left in AN5.
Next animal in AN5:

j = max(AN5) = 4

Add sire of 4 (animal 1) to AN5:

l l l51 51 5405 025= + =. .
a a l55 55 54

2
44

205 05 075 06875= + = + =D . ( . ) ( . ) .

Delete animal 4 from AN5; animals 3 and 1 left in AN5.
Next animal in AN5:

j = =max( )AN5 3

Since animal 1, the sire of j, is already in AN5, add only dam of 3 (animal 2)
to AN5:

l l l51 51 5305 025 05 05 05= + = + =. . ( . ) . .
l l l52 52 5305 0 05 05 025= + = + =. ( . ) . .
a a l55 55 53

2
33

206875 05 05 08125= + = + =D . ( . ) . .

Delete animal 3 from AN5; animals 1 and 2 left in AN5.
Next animal in AN5:

j = =max( )AN5 2

Both parents are unknown:

a a l55 55 52
2

22
208125 025 1 0875= + = + =D . ( . ) .

Delete animal 2 from AN5; animal 1 left in AN5.
Next animal in AN5:

j = =max( )AN5 1

Both parents are unknown:

a a l55 55 51
2

11
20875 05 1 1125= + = + =D . ( . ) .

Delete 1 from AN5; AN5 is empty.

F5 1125 1 0125= − =. .

which is the same inbreeding coefficient as that obtained for animal 5 in
Section 2.1.
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B.2 Modified Meuwissen and Luo Algorithm

The approach of Meuwissen and Luo given above was modified by Quaas
(1995) to improve its efficiency. The disadvantage of the above method is
that, while calculating a row of L at a time (Henderson, 1976), it is, how-
ever, accumulating diagonal elements of A, as in Quaas (1976), and this
necessitates tracing the entire pedigree for i, but what is really needed is
only the common ancestors. Thus a more efficient approach is to accumu-
late as di i

as Sk l ls k d k kki i
D (Henderson, 1976) and calculate Fi as 05. as di i

=
Skl ls k d ki i

(0.5Dkk). Instead of computing the ith row of L, only the
non-zero elements in the rows for the sire and dam of i are calculated.
Quaas (1995) suggested setting up a separate ancestor list (ASsi) for si and
another (ADdi

) for di; then F Di s d s d s k d k kk
k

a U l l
i i i i i i

= = ∑05 05. ( . )e .

Similarly to the approach of Meuwissen and Luo (1992), the two lists
can be set up simultaneously while processing the ith animal by continu-
ally adding the parents of the next youngest animal in either list to the
appropriate list. If the next youngest in each list is the same animal, say k,
then it has a common ancestor and Fi is updated as Fi = Fi + l ls k d ki i

(0.5Dkk).
When ancestors of one of the parents have been processed, the procedure
can be stopped, and it is not necessary to search both lists completely.
The algorithm for this methodology is as follows:

F0 1= −
For i = 1, N:

Fi = 0

If si is known, add si to ASs s si i i
l, = 1.

If di is known, add di to ADd d di i i
l, = 1.

Do while ASsi
not empty and ADdi

not empty.

j ks di i
= =max( ), max( )AS AD

If j � k, then (next youngest ancestor j is in ASsi
)

If sj is known, add sj to ASs s s s sj s ji i j i i
l l l: .= + 05

If dj is known, add dj to ASs s d s d s ji i j i j i
l l l: .= + 05

Delete j from ASsi
.

If k > j, then (next youngest k is in ADdi
)

If sk is known, add sk to ADd d s d s d ki i k i k i
l l l: .= + 05

If dk is known, add dk to ADd d d d d d ki i k i k i
l l l: .= + 05

Delete k from ADdi
.

Else (next youngest ancestor j = k is a common ancestor)
If sj is known, add sj to ASs s s s s s ji i j i j i

l l l: .= + 05
add sj to ADd d s d s d ji i j i j i

l l l: .= + 05
If dj is known, add dj to ASs s d s d s ji i j i j i

l l l: .= + 05
add dj to ADd d d d d d ji i j i j i

l l l: .= + 05

F F l li i s j d j jji i
= + 05. ( )D

Delete j from ASsi
and ADdi

End if
End while
End do
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B.2.1 Illustration of the algorithm

Using the pedigree in Table 2.1, the algorithm is illustrated for animal 5,
which is inbred.

For animal 5:

F5 = 0

Both parents known, s = 4 and d = 3.

Add 4 to AD4: l44 = 0.5
Add 3 to AD3: l33 = 0.5

Processing animals in AS4 and AD3:

j k= =4 3,

j > k therefore.
Add sire of 4, animal 1, to AS4: l41 = l41 + 0.5l44 = 0.5
Delete animal 4 from AS4.

Next animals in AS4 and AD3:

j k= =1 3,

k > j therefore.
Add sire of 3, animal 1, to AD3: l31 = l31 + 0.5l33 = 0.5
Add dam of 3, animal 2, to AD3: l32 = l32 + 0.5l33 = 0.5
Delete 3 from AD3.

Next animals in AS4 and AD3:

j k= =1 2,
k j>

Both parents of 2 are unknown.
Delete 2 from AD3.

Next animals in AS4 and AD3:

j k= =1 1,
j k=

Both parents are unknown.

F F l l5 5 41 31 1105 05 05 05 1 0125= + = =. ( ) . ( . )( . )( ) .D

which is the same inbreeding coefficient as that obtained from the algo-
rithm in B.1.
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Appendix C

C.1 Outline of the Derivation of the Best Linear Unbiased
Prediction (BLUP)

Consider the following linear model:

y = Xb + Za + e [c.1]

where the expectations are:

E(y) = Xb; E(a) = E(e) = 0

and:

var( ) , var( ) ( , ) cov( , )a A G e R a e e a= = = = =sa
2 0and cov

Then, as shown in Section 3.1:

var cov , cov ,( ) , ( ) and ( )y = = ′ + = =V ZGZ R y a ZG y e R

The prediction problem involves both b and a. Suppose we want to
predict a linear function of b and a, say k b a′ + , using a linear function of y,
say L y′ , and k b′ is estimable. The predictor L y′ is chosen such that:

E E( ) ( )L y k b a′ = ′ +

that is, it is unbiased and the prediction error variance (PEV) is minimized
(Henderson, 1973). Now PEV (Henderson, 1984) is:

PEV var= ′ − ′ +( )L y k b a
= ′ −var( )L y a
= ′ + − ′ −L y L a L y a a y Lvar var cov , cov ,( ) ( ) ( ) ( )
= ′ + − ′ − ′L VL G L ZG ZG L [c.2]

Minimizing PEV subject to E L y E k b a( ) ( )′ = ′ + and solving (see
Henderson, 1973, 1984, for details of derivation) gives:

L y k X V X X V y GZ V y X X V X X V y1 1 1 1 1′ = ′ ′ ′ − ′ − ′ ′− − − − − − −( ) ( ( ) )1
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Let $b X V X XV y= ′ − − −( )1 1 , the generalized least square solution for b, then
the predictor can be written as:

L y k b GZ V y Xb1′ = ′ + ′ −−$ ( $ ) [c.3]

which is the BLUP of k b a′ + .
Note that, if k b′ = 0, then:

L y a GZ V y Xb′ = = ′ −−BLUP( ) ( $ )1 [c.4]

which is equivalent to the selection index. Thus BLUP is the selection index
with the generalized least-square solution (GLS) of b substituted for b.

C.2 Proof that $b and â from Mixed Model Equations are the
GLS of b and BLUP of a, respectively

In computation terms, the use of equation [c.3] to obtain BLUP of k b a′ + is
not feasible because the inverse of V is required. Henderson (1950) formu-
lated the mixed model equations (MME) which are suitable for calculating
solutions for b and a, and showed later that k b′ $ and $a, where $b and $a are
solutions from the MME, are the best linear unbiased estimator (BLUE) of
k b′ and BLUP of a, respectively.

The usual mixed model equations for [c.1] are:

′ ′ ′
′ ′ +

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′− −

− − −

X R X X R Z
Z R X Z R Z G

b
a

X
1

1 1

1 1

$

$

R y
Z R y

−

−′
⎡

⎣
⎢

⎤

⎦
⎥

1

1
[c.5]

The proof that $b from the MME is the GLS of b and therefore k b′ $ is the
BLUE of k b′ was given by Henderson et al. (1959). From the second row
of [c.5]:

( )$ ( $ )Z R Z G a Z R y Xb′ + = ′ −− − −1 1 1

$ ( ) ( $ )a Z R Z G Z R y Xb= ′ + ′ −− − − −1 1 1 1 [c.6]

From the first row of [c.5]:

X R Xb X R Za X R y′ + ′ = ′− − −1 1 1$ $

Substituting solution for $a into the above equation gives:

′ + ′ ′ − ′− − − −X R Xb X R Z WZ R y Xb = X R y1 1 1 1$ $( )( )

where W Z R Z G= ′ +− −( )1 1 −1

′ − ′ ′ = ′ − ′ ′− − − − − −X R Xb X R Z WZ R Xb X R y X R ZWZ R y1 1 1 1 1 1$ $( )

′ − ′ = ′ − ′− − − − − −X R R ZWZ R Xb X R R ZWZ R y( ) (1 1 1 1 1 1$ )

′ = ′− −X V Xb X V y1 1$

with V R R ZWZ R− − − −= − ′1 1 1 1

$b = X V X X V y( )′ ′− − −1 1 1 [c.7]

It can be shown that:

V R R ZWZ R− − − −= − ′1 1 1 1
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By premultiplying the right-hand side by V and obtaining an identity matrix
(Henderson et al., 1959):

V R R ZWZ R R ZGZ R R ZWZ R[ ]− − − − − −− ′ = + ′ − ′1 1 1 1 1 1( )( )
= + ′ − ′ − ′ ′
= + ′ − + ′

− − − −

−

I ZGZ R ZWZ R ZGZ R ZWZ R

I ZGZ R Z I G

1 1 1 1

1 ( Z RZ WZ R

I ZGZ R ZG G Z RZ WZ R

I ZGZ R

)

( )

′
= + ′ − + ′ ′
= + ′ −

−

− − −

−

1

1 1 1

1 ZG W WZ R

I ZGZ R ZGZ R
I

( )− −

− −

′
= + ′ − ′
=

1 1

1 1

Thus the solution for b from the MME is equal to the generalized least
solution for b in equation [c.3].

The proof that $a from the MME is equal to GZ V y Xb′ −−1( )$ in equation
[c.3] was given by Henderson (1963). Replace V−1 in GZ V y Xb′ −−1( $ ) by
R R ZWZ R− − −− ′1 1 1. Thus:

GZ V y Xb GZ R R ZWZ R y Xb

G Z R

′ − = ′ − ′ −

= ′ − ′

− − − −

−

1 1 1 1

1

( ) ( )( )

(

$ $

Z R ZWZ R y Xb

G I Z R ZW Z R y Xb

G W

− −

− −

−

′ −

= − ′ ′ −

=

1 1

1 1

1

)( )

( ) ( )

(

$

$

− ′ ′ −

= ′ + − ′ ′

− −

− − −

Z R Z WZ R y Xb

G Z RZ G Z R Z WZ R y

1 1

1 1 1

) ( )

(( ) ) (

$

−

= ′ + − ′ ′ −

= ′

− − −

−

Xb

G Z R Z I GZ R Z WZ R y Xb

I WZ R y

$

$

)

( ) ( )

( ) (

1 1 1

1 − Xb$ )

= ′ −−WZ R y Xb a1( ) =$ $ (see equation [c.6])

Thus the BLUP of k b a k b a′ + = ′ +$ $, where $b and $a are solutions to the MME.

C.3 Deriving the Equation for Progeny Contribution (PC)

Considering an individual i that has one record with both sire (s) and dam
(d) known, the mixed model equations for the three animals can be written
(assuming the sire and dam are ancestors with unknown parents) as:

u u u

u u u

u u u

ass sd si

ds dd di

is id ii

a a a

a a a

a a a1+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

$ s

d

i

a

a y

$

$

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
0

1
[c.8]

Where the u terms are elements of A−1.
From equation [c.8], the equation for solution of the sire is:

u a u a u ass s sd d si ia a a$ $ $= − −0
u ass sa $ = PC

with:

PC = − −0 u a u asd d si ia a$ $
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When the mate is known:

PC = − +0 11
2 a a$ ( ) $a ad i

PC = − = −a a( $ $ ) . ( $ $ )ai d i da a a1
2 05 2

In general, assuming sire s has k progeny:

PCs prog i m
k

prog
k

u a a u= −∑ ∑05 2. ( $ $ )a

where uprog is 1 when the mate of s is known or 2
3 when the mate is not

known.
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Appendix D: Methods for
Obtaining Approximate Reliability
for Genetic Evaluations

D.1 Computing Approximate Reliabilities for an Animal Model

Presented below is a method published by Meyer (1989) for obtaining
approximate values of repeatability or reliability for genetic evaluations from
an animal model and was used to estimate reliabilities in the national dairy
evaluation system in Canada in the 1990s. The reliability for each animal is
derived from the corresponding diagonal element in the mixed model equa-
tions (MME), adjusting for selected off-diagonal coefficients. For instance,
the section of the coefficient matrix (C) pertaining to an animal i with parents
f and m and with a record in a subclass h of a major fixed effect such as
herd–year–season (HYS) could be represented as:

c

c

c

n

ii

ff

mm

h

− −
−
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

a a

a . a

a . a

1
05 0

05 0
1 0 0

where nh is the number of records in subclass h of the major fixed effect
and a s s= e a

2 2. If this were the complete coefficient matrix for this animal,
C−1 and hence true reliability could be obtained using partition matrix
results. Thus the coefficient cii can be calculated as the reciprocal of the
ith diagonal element of C after absorbing all other rows and columns.

For animal i:

c c n c c c cii
ii h ff mm ff mm= − − + − − −( / ( )/( ))1 2 1

4
2 1a a a

and for parent f:

c c Q Q c Qff
ff mm= − − − − −( ( ) /( ))1

2
2 1a

with:

Q c nii h= − −a 2 11( / )

Exchange m for f for parent m.
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However, if there are other off-diagonals for animal i, the above equa-
tions will yield approximations of the diagonal elements of C and hence
reliability. Based on the above principle of forming and inverting the
submatrix of the MME for each animal, Meyer outlined three steps for cal-
culating approximate reliabilities, which was similar to the true reliabilities
from her simulation study. These steps are as follows:

1. Diagonal elements (D) of animals with records are adjusted for the
effect of major fixed effects, such as HYS. Thus:

D D ni i h1 0 1= − /

and for animals without records:

D Di i1 0=

where D i0 is the diagonal element for animal i in the MME and in general,
its composition depending on the amount of information available on the
animal, is:

D x n n ni i i i i0 1 23 2= + + +a a a/ /

where x i = 1 if the animal has a record and otherwise it is zero, ni equals
1 or 4

3 or 2 if none or one or both parents are known, n i1 and n i2 are number of
progeny with one or both parents known, respectively.
2. Diagonal elements for parents (f and m) are adjusted for the fact that
the information on their progeny is limited.

For each progeny i with only one parent known, adjust the diagonal
element of the parent f as:

D D Df f i2 1
2 4

9 1
1= − −a ( )

and if both parents are known adjust the diagonal of parent f as:

D D Df f i2 1
2

1
1= − −a

Replace subscript f with m for the other parent. For animals that are not
parents:

D Di i2 1=

3. Adjustment of progeny diagonals for information on parents.
This involves initially unadjusting the diagonals of the parents for the

contribution of the ith progeny in question by reversing step 2 before
adjusting progeny diagonals for parental information. If only one parent f
is known, the diagonal is unadjusted initially as:

D D Df f i2 2
2 4

9 2
1* ( )= + −a

and if both parents are known as:

D D Df f i2 2
2

2
1* = − −a

for parent f. Exchange m for f in the above equation to calculate for parent m.
Adjustment of progeny i diagonal then is:

D D Di i f3 2
2 4

9 2
1= − −a ( )*
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if only parent f is known and:

D D D D D Di i f m f m3 2
2

2 2 2 2
1
4

2= − + − −a a a(( )/( ))* * * *

when both parents f and m are known.
For animals with unknown parents:

D Di i3 2=

Reliability for progeny i is calculated as:

r D i
2

3
11= − −const.( )a

where const. is a constant of between 0.90 to 0.95 from Meyer simulation
studies, which gave the best estimate of r 2.

D.2 Computing Approximate Reliabilities for
Random Regression Models

Meyer and Tier (2003) extended the method in Appendix D.1 to estimate
reliabilities for multivariate and random regression models. They outlined
several steps.

1. Determine value of observation for an animal

Compute the diagonal block ( )D i for animal i in the MME, based on the
information from the data, as:

D Z R Zi i i i= ′ −1

However, to account for the limited subclass sizes of contemporary group
effect, such as herd–test–day in dairy cattle, D i can better be calculated as:

D Z R R S R Zi i i i i i i= ′ −− − − −( 1 1 1 1( ) )

where Z i and R i
−1 are submatrices of Z and R−1 for animal i and Si is the

block of the coefficient matrix pertaining to the contemporary groups of
which animal i is a member. Then the permanent environmental (pe) effects
are also absorbed into the block corresponding to animal genetic effects:

D D Z R Q Q R Q P Q R Zi i i i i i i i i
* )= − ′ ′ + ′− − − −1 1 1 1

i i(

where Q i is a submatrix of the matrix Q defined in Section 7.2. Limited sub-
class effects of pe can be accounted for by using weights w n km m= −( )/
nm ≤ 1, for the mth record, with nm the size of the subclass to which the
record belongs and k the number of ‘repeated’ records it has in that subclass.
Then R i in the above equation is replaced with R i m ew* ( )= Diag a 2 .

2. Value of records on descendants

In this second step, the contributions from progeny and other descen-
dants are accumulated for each animal, processing the pedigree from the
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youngest to the oldest. Let E i be the block of contributions for animal i
that has ni progeny. Then:

E G G D E G Gi i k
k

ni

= − + +
⎛

⎝
⎜

⎞

⎠
⎟− −

=

−
−

−∑1
3

1 4
9

1

1

4
3

1

1

1*

This block is accumulated for both sire and dam of the ith animal. This
equation can be derived by assuming that each progeny has only one par-
ent known and that the parent has no other information; then the MME
are set up for the animal and the parent and the equations for the animal
are absorbed in those of the parent. The above equation will give an over-
estimate of the individual’s contribution to its parents if it is in a contem-
porary group with many of its half-sibs. This can be discounted by
weighting contributions with a factor dependent on the proportion of
sibs in a subclass. Let H i be a diagonal matrix of weights wm < 1, with
w n s nm m m m= −( )/ , where nm is the total number of records in the sub-
class for trait m and s m the total number of sibs of animal i in the subclass.
Calculate D H D Hi i i i

** *= and then replace D Di i
* **.with

3. Value of records on ancestors

In the third step, contributions from parents, ancestors and collateral rela-
tives are accumulated for each animal, processing the pedigree from old-
est to youngest. However, in step two, contributions from descendants
were accumulated for all animals; hence E j for parent j of animal i includes
the contribution from animal i. The contributions of animal i have to be
removed from E j to avoid double counting. The corrected block is:

E G G E F G Gj i j
* ( )= − − + +− − − − −1

3
1 4

9
1 4

3
1 1 1

where Fj is the sum of contributions from all sources of information for
parent j. As parents are processed in the pedigree before progeny, Fj is
always computed before the contribution of parent j to animal i is required.
For animal i, Fi is:

F E D Ei j i k
k

n

j

t ii

= + +
==

∑∑ * *

11

with t i = 0, 1 or 2 denoting the number of parents of animal i that are
known and ni, the number of progeny for animal i.

The matrix Ti of the approximate prediction error variance (PEV) and
prediction error covariance (PEC) for the genetic effects for animal i is:

T F Gi i= + −( ) 1

The approximate reliability for a linear function of estimated breeding
values for animal i then is:

ri i
2 1= − ′ ′k T k k Gk/

with k calculated as described in Chapter 7, Section 7.2.4.
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Appendix E

E.1 Canonical Transformation: Procedure to Calculate the
Transformation Matrix and its Inverse

The simplification of a multivariate analysis into n single trait analyses
using canonical transformation involves transforming the observations of
several correlated traits into new uncorrected traits (Section 5.2). The
transformation matrix Q can be calculated by the following procedure,
which has been illustrated by the G and R matrices for Example 5.1 in
Section 5.1.2.

The G and R matrices are, respectively:

WWG
PWG

20 18
18 40

⎡

⎣
⎢

⎤

⎦
⎥

WWG
PWG

40 11
11 30

⎡

⎣
⎢

⎤

⎦
⎥

where WWG is the pre-weaning gain and PWG is the post-weaning gain.

1. Calculate the eigenvalues (B) and eigenvectors (U) of R:

R UBU= ′

For the above R:

B = diag( . , . )47083 22917

and:

U =
−⎡

⎣
⎢

⎤

⎦
⎥

0841 0541
0541 0841
. .
. .
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2. Calculate P and PGP :

P U B U= ′−1

=
−

−
⎡

⎣
⎢

⎤

⎦
⎥

01642 00288
00288 01904
. .
. .

and:

PGP′ = ⎡

⎣
⎢

⎤

⎦
⎥

0403 0264
0264 1269
. .
. .

3. Calculate the eignenvalues (W) and eigenvectors (L) of PGP :

PGP LWL′ = ′

W = diag( . , . )03283 13436

L =
−

⎡

⎣
⎢

⎤

⎦
⎥

0963 0271
0271 0963
. .
. .

4. The transformation matrix Q can be obtained as:

Q L P= ′

Q Q=
−⎡

⎣
⎢

⎤

⎦
⎥ =−01659 00792

00168 01755
57651 2601. .

. .
. .

and
06

05503 54495−
⎡

⎣
⎢

⎤

⎦
⎥. .

E.2 Canonical Transformation with Missing Records and
Same Incidence Matrices

Ducrocq and Besbes (1993) presented a methodology for applying canoni-
cal transformation when all effects in the model affect all traits but there
are missing traits for some animals. The principles of the methodology are
briefly discussed and illustrated by an example.

Let y, the vector of observations, be partitioned as ′ =y y y[ , ]v m and
u b a= ′ ′[ ], , where yv and ym are vectors of observed and missing records,
respectively, b is the vector of fixed effects and a is the vector of random
effects. Assuming that the distribution of y given u is multivariate normal,
Ducrocq and Besbes (1993) showed that the following expectation maximi-
zation (EM) algorithm gives the same solutions for a and b as when the usual
multivariate MME are solved:

E step: at iteration k, calculate $ [ | , $ ][ ] [ ]y y y uk
v

k= E

M step: calculate $ [ ]u k+ =1 BLUE and BLUP solutions of b and a,
respectively, given $ [ ]y k

The E step implies doing nothing to observed records but replacing the
missing observations by their expectation given the current solutions for
b and a and the observed records. The equation for the missing records for
animal i is:

$ $ $[ ] [ ] [ ] [ ]y x b a eim
k

im
k

im
k

im
k= ′ + + [e.1]
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If X is the matrix that relates fixed effects to animals, ′x im denotes the row
of X corresponding to missing records for animal i and $ [ ]e im

k is the regres-
sion of the residuals of missing records on the current estimates of the
residuals for observed traits. Thus:

$ [ | , $ ] [ $e e y u u R R y x bim
k

iv
k

vv
[ ] [ ] 1 [ ]E= = = − ′ −−

im mv iv iv
k a iv

k[ ]]

where Rmv and Rvv are submatrices obtained through partitioning of R,
the residual covariance matrix. Rvv represents the residual variance of
observed traits and Rmv is the covariance between missing traits and
observed traits. If three traits are considered, for example, and trait 2 is
missing for animal i, then Rvv is the submatrix obtained by selecting in R
the elements at intersection of rows 1 and 3 and columns 1 and 3. The
submatrix Rmv is the element at the intersection of row 2 and columns 1
and 3. Once the missing observations have been estimated, records are
now available on all animals and the analysis can be carried out as usual,
applying canonical transformation as when all records are observed.

The application of the method in genetic evaluation involves the fol-
lowing steps at each iteration k, assuming Q is the transformation matrix
to canonical scale and Q −1 the back-transforming matrix:

1. For each animal i with missing observations:
(1a) calculate $ , $[ ] [ ] [ ]y b aim

k k kgiven and using [e.1];
(1b) transform $y i to the canonical scale: $ $*

.y Qyi i=
2. Solve the mixed model equations to obtain solutions in the canonical
scale: b a* *and[ ] [ ]$k k+ +1 1 .
3. Back-transform using Q −1 to obtain $ $[ ] [ ]b ak k+ +1 1and .
4. If convergence is not achieved, go to 1.

Ducrocq and Besbes (1993) showed that it is possible to update y (step 1)
without back-transforming to the original scale (step 3) in each round of
iteration. Suppose that the vector of observations for animal i with miss-
ing records, y i , is ordered such that observed records precede missing
values: ′ = ′ ′y y yi iv im[ , ], and rows and columns of R, Q and Q−1 are ordered
accordingly. Partition Q as ( )Q Q Qv m and −1 as:

Q
Q
Q

− =
⎡

⎣
⎢

⎤

⎦
⎥1

v

m

then from [e.1], the equation for Qy y$ $i ior * (see 1b) is:

$ [ $ $ ( $* [ ]y Q y Q x b a R R y xi v im
k

im mv iv iv= + ′ + + − ′−
iv vvm

[k] 1 b a[ ] [ ]$ )]k
iv
k− [e.2]

However:

$

$
$

$

$
*

*

*

b
b

Q b Q b
Q b

iv

im

v

m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
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and a similar expression exists for $a. Substituting these values for b and $a
in equation [e.2]:

$ ) ( )( $*y Q Q R R y Q Q Q R R Q x bi v m mv iv m
m

m
v

i= + + − ′− −( *
vv mv vv

1 1 [ ] [ ]

*[ ] [ ](

k k

k k

+

= + ′ +

$ )
$ $ )

a

Q y Q x b a

*

*
1 2iv i [e.3]

with Q Q Q R R Q Q Q Q R R Ql and= + = −− −
v mv m m

v
m vv

m
mv vv

1
2

1( ).
Thus, for an animal with missing records, $y i

* in [e.3] is the updated
vector of observation transformed to canonical scale (steps 1a and 1b
above) and this is calculated directly without back-transformation to the
original scale (step 3). The matrices Q 1 and Q 2 in [e.3] depend on the
missing pattern and, if there are n missing patterns, n such matrices of
each type must be set up initially and stored for use at each iteration.

E.2.1 Illustration

Using the same genetic parameters and data as for Example 5.3, the above
methodology is employed to estimate sex effects and predict breeding val-
ues for pre-weaning weight and post-weaning gain iterating on the data
(see Section 8.3].

From Section E.1, Q is:

Q Q=
−⎡

⎣
⎢

⎤

⎦
⎥ =−01659 00792

00168 01755
57651 260. .

. .
. .

and 1 06
05503 54495−

⎡

⎣
⎢

⎤

⎦
⎥. .

Partitioning Q and Q −1 as specified above gives the following matrices:

Q Qv m= ⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥

01659
00168

00792
01755

.

.
.
.

,

Q Qv = = −[ . . ] [ . . ]57651 26006 05503 54495and m

From the residual covariance matrix in Section E.1:

R Rmv vv
− = =1 11

40 0275.

The matrices Q1 and Q2, respectively, are:

Q 1
01659
00168

00792
01755

0275
01

= ⎡

⎣
⎢

⎤

⎦
⎥ +

−⎡

⎣
⎢

⎤

⎦
⎥ =

.

.
.
.

.
. 441

00654.
⎡

⎣
⎢

⎤

⎦
⎥

and:

Q 2
00792
01755

05503 54495
00792
0175

=
−⎡

⎣
⎢

⎤

⎦
⎥ − −

−.
.

[ . . ]
.
. 5

0275 57651 26006
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥. [ . . ]

=
−

− −
⎡

⎣
⎢

⎤

⎦
⎥

01691 03750
03748 08309
. .
. .

Employing steps 1 to 4 given earlier to the data in Example 5.3, using
the various transformation matrices given above and solving for sex and
animal solutions by iterating on the data (see Chapter 13, Section 13.3),
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gave the following solutions on the canonical scale at convergence. The
solutions on the original scale are also presented.

Effects

Canonical scale Original scale

VAR1 VAR2 WWG PWG

Sex*
1 0.180 1.265 4.326 6.794
2 0.124 1.108 3.598 5.968

Animal
1 0.003 0.053 0.154 0.288
2 −0.006 −0.010 −0.059 −0.054
3 0.003 −0.030 −0.062 −0.163
4 0.002 0.007 0.027 0.037
5 −0.010 −0.097 −0.307 −0.521
6 0.001 0.088 0.235 0.477
7 −0.011 −0.084 −0.280 −0.452
8 0.013 0.076 0.272 0.407
9 0.009 0.010 0.077 0.051

*1 = male, 2 = female.
VAR1 = Qy1, VAR2 = Qy2 with WWG = y1 and PWG = y2.

These are similar to the solutions obtained from the multivariate analysis
in Section 5.3 or the application of the Cholesky transformation in Section
5.4. The advantage of this methodology is that the usual univariate pro-
grams can easily be modified to incorporate missing records.

The prediction of the missing record (PWG) for animal 4 using solu-
tions on canonical and original scales at convergence is illustrated below.

Using [e.1]:

$ $ $ ( $ $ )y mv vv42 12 42
1

41 11 41= + − − −−b ba R R y a

= + + − −6794 0037 0275 45 4326 0027. . . ( . . . )

= 6.9

where yij and $a ij are the record and estimated breeding value, respectively,
for animal i and trait j and bkj is the fixed effect solution for level k for trait j.

Using [e.2]:

$

$
( $ $ )

*

*
* *y

y
y41

42
1 41 2 4

⎡

⎣
⎢

⎤

⎦
⎥ = + ′ +Q Q x b a

$

$

.

.
.
.

*

*

y

y
41

42
2

0648
0294

0180
1265

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥ + ⎡

⎣
⎢

⎤
Q

⎦
⎥ + ⎡

⎣
⎢

⎤

⎦
⎥Q 2

0002
0007
.
.

= ⎡

⎣
⎢

⎤

⎦
⎥ +

−⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤0648
0294

0445
0990

0203
1284

.

.
.
.

.

. ⎦
⎥
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These predicted records for animal 4 are on the canonical scale and they
are used for the next round of iteration if convergence has not been
achieved. These predicted records can be transformed to the original
scale as:

$

$

.

.
.
.

y

y
41

42

1 0203
1284

45
69

⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣
⎢

⎤

⎦
⎥−Q

The record for WWG is as observed and the predicted missing record for
PWG is the same as when using [e.1].

E.3 Cholesky Decomposition

Any positive semi-definite symmetric matrix R can be expressed in the
form TT�, where T is a lower triangular matrix. The matrix T can be calcu-
lated using the following formulae.

The ith diagonal element of T is calculated as:

t r tii ii ij
j

i
= −

=

−

∑ 2

1

1

and the lower off-diagonal element of the ith row and the kth column of T
as:

t
t

r t tik
kk

ik ij kj
j

k
= −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=

−

∑1

1

1
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Appendix F: Procedure for
Computing Deregressed
Breeding Values

The deregressed breeding values (DRP) of bulls used in multi-trait across-
country evaluations (MACE) are obtained by solving [5.22] for y consider-
ing data from only one country at a time. Jairath et al. (1998) presented an
algorithm for calculating deregressed proof (DRP). For instance, equation
[5.22] for country i can be written as:

′ ′
+

− −

− − − − −

1 R 1 1 R 0 0
R 1 R A A A
0 A

i i

i i nn i np i ng i

pn

1 1

1 1 1 1 1a a a
− − −

− − −

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟

1 1 1

1 1 1

a a a

a a a

i pp i pg i

gn i gp i gg i

A A
0 A A A

⎟
⎟

+
⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

′⎛

⎝

⎜
−

−

$

$

$

$

m i

i i

i

i

i i

i iQg s
p
g

1 R y
R y
0
0

1

1⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

[f.1]

where pi is the vector of identified parents without estimated breeding
value (BV) and A jj

−1 are blocks of the inverse of the relationship (see Chap-
ter 3, Section 3.5) with j = n, p and g for animals with records, ancestors
and genetic groups, respectively, and ai i ih h= −( )/4 2 2, the ratio of resid-
ual variance to sire variance for the ith country. The deregression of esti-
mated BV involves solving [f.1] for yi. The constant m i and vectors si, pi, gi

and yi are unknown but ai, the vector of genetic evaluations for sires, is
known as well as matrices Q, R i

−1 and A jj
−1. Let a 1 Qg si i i= + +m i . The

following iterative procedure can be used to compute the vector of DRP,
yi:

1. Set 1mi, pi, si and gi to 0.
2. Calculate Qgi + si = ai − 1mi
3. Compute:

$

$

p
g

A A
A A

A
A

i

i

pp pg

gp gg

pn

gn

⎛
⎝
⎜

⎞
⎠
⎟ = −

⎛
⎝
⎜

⎞
⎠
⎟

− −

− −

− −1 1

1 1

1 1

−

⎛
⎝
⎜

⎞
⎠
⎟ +

1
( )Qg s$ $i i

4. Generate:

R y R R A Qg s A p Ai i i i i i pn i g+− − − − −= + + +1 1 1 1 11m ( )( $ ) $nn i i+ a n i
−1 $g i a

and 1′ −R yi
1

i .
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5. Now calculate:

m1
1 1 1= ′ ′− − −( )1 R 1 1 R yi i i

6. Continue at step 2 until convergence is achieved.
7. Then compute DRP as y R R yi i i i= −( )1 .

Using the data for country 1 in Example 5.7, the deregression steps
above are illustrated in the first iteration. For country 1, a1 = 206.50/20.5 =
10.0732 and, considering only the bulls with evaluations, R1 =
diag(0.0172, 0.0067, 0.0500, 0.0400). The pedigree structure (see Example
5.7) used for the deregression of breeding values in country 1 is:

Bull Sire MGS MGD

1 5 G2 G3
2 6 7 G4
3 5 2 G4
4 1 G2 G4
5 G1 G2 G3
6 G1 G2 G3
7 G1 G2 G3

MGS, maternal grandsire; MGD, maternal grandam.

The matrix A 1
1− was calculated according to the rules in Section 5.6.2.

In the first round of iteration, the transpose of the vector Qg1 + s1 in
step 2 above is:

( )Qg s1 1+ ′ = −(9.0 10.1 15.8 4.7)

The vector of solutions for p1 and g1 in step 3 is computed as:

$

$

p
g

1

1

⎡

⎣
⎢

⎤

⎦
⎥ =

− − −17.094 0.000 0.000 5.037 0.839 0.839 1.831
0.000 13.736 1.831 5.037 2.518 2.518 1.831
0.000 1.83

− − −
1 10.989 5.037 2.518 2.518 0.916

5.037 5.037 5.037 8.
− − −

− − − 555 3.777 3.777 0.000
0.839 2.518 2.518 3.777 4.568 2.72− − − 8 0.839
0.839 2.518 2.518 3.777 2.728 3.728 0.000
1.831 1

− − −
.831 0.916 0.000 0.839 0.000 3.671

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−1

6.716 1.831 7.326 0.000
0.000 7.326 0.000 0.000
0.000 3.66

−

3 0.000 0.000
0.000 0.000 0.000 0.000
1.679 0.000 0.000 3.357
3.357 0.000 0.000 0.000
1.679 2.747 3.663 3.357−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

9.0
10.1
15.8

4.7

16.330
12.861
12.622
23.481

9.801
12.375

0.564

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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The transpose of the vector ( 1
1R y−

1 ) in step 4 is (30.2 9.0 10.1 15.8) and

′ =−1 1R y1
1 2235.50

Therefore in the first round of iteration (step 4):

m1 253= =2235.50/ 8.835

Convergence was achieved after about six iterations. The transpose of the
vector ( 1

1R y−
1 ) after convergence is:

( (563.928 1495.751 385.302 214.2781
1R y− = −1 ) )�

with R1
1 diag− = (0.0172, 0.0067, 0.050, 0.04), the transpose of the vector of

DRB calculated in step 7 is:

′ =y 1 (9.7229 9.9717 19.2651 −8.5711)

Appendix F 319

333
Z:\CABI\A4934 - Mrode\MakeUp\A5048 - Mrode - Voucher Proofs.vp
Friday, September 16, 2005 3:26:54 PM

Color profile: Generic CMYK printer profile
Composite  150 lpi at 45 degrees



Appendix G: Calculating F, a
Matrix of Legendre Polynomials
Evaluated at Different Ages or
Time Periods

The matrix F is of order t (the number days in milk or ages) by k (where k
is the order of fit) with element f fij j t= ( )a equals the jth Legendre polyno-
mial evaluated at the tth standardized age or days in milk (DIM). Thus at

is the tth DIM or age standardized to the interval for which the polynomi-
als are defined. Kirkpatrick et al. (1990, 1994) used Legendre polynomials
which span the interval −1 to +1. Defining dmin and dmax as the first and
latest DIM on the trajectory, DIM dt can be standardized to at as:

at = − + − −1 2( )/( )a d d dt min max min

In matrix notation, F L= M , where M is the matrix containing the polyno-
mials of the standardized DIM values and L is a matrix of order k contain-
ing the coefficients of Legendre polynomials. The elements of M can be
calculated as m aij i

j= −( ( )1 , 1, ..., ; 1, ..., )i = t j = k . For instance, given that
k = 5 and that t = 3 (three standardized DIM), M is:

M =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
1
1

a a a a

a a a a

a a a a

l 1
2

1
3

1
4

2 2
2

2
3

2
4

3 3
2

3
3

3
4

Using the milk yield data in Table 7.1 as an illustration, with ten DIM, the
vector of standardized DIM is:

a′ = − − − − −[ 1.0 0.7778 0.5556 0.3333 0.1111
0.1111 0.3333 0.5556 0.7778 1.0]
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and M is:

M =

− −
−

1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 0.7778 0.6049 0.4705 0.3660
1.0000 0.5556 0.3086 0.1715 0.0953
1.

−
− −

0000 0.3333 0.1111 0.0370 0.0123
1.0000 0.1111 0.0123

− −
− −0.0014 0.0002

1.0000 0.1111 0.0123 0.0014 0.0002
1.0000 0.3333 0.1111 0.0370 0.0123
1.0000 0.5556 0.3086 0.1715 0.0953
1.0000 0.7778 0.6049 0.4705 0.3660
1.0000 1.0000 1.0000 1.0000 1.0000

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Next, the matrix L of Legendre polynomials needs to be computed.
The jth Legendre polynomial evaluated at age t (Pj(t)), can in general be
evaluated by the formula given by Abramowitz and Stegun (1965). In
general, for the j integral, the polynomial:

P t
j r

r j j
tj j

r
j r

r

j

( )
!

!( !( !

/

= − −
− −

−

=
∑1

2
2 2

0

2 ( 1) (2 )
) 2 )r r

where j/2 = (j − 1)/2 if j is odd. The first five Legendre polynomials there-
fore are:

P t P t t P t t0 1 2
2( ) 1; ( ) ; ( ) (3 1)= = = −1

2

P t t t P t t t3
3

4
4 2( ) (5 3 ); and ( ) (35 30 3)= − = − +1

2
1
8

The normalized value (that is, the integration of P tj
2( ) from −1 to 1 added to

1) of the jth Legendre polynomial evaluated at age t (fj ( ))t , can be obtained
as:

fj jt
n

P t( ) ( )= +2 1
2

Thus:

f f0
1
2 0 1

3
2 1( ) ( ) ( ) ( ) ( )t P t t P t t= = = =0.7071; 1.2247

f2
5
2 2

2( ) ( ) 2.3717( 0.7906t t= = −P t )

f3
7
2 3

3( ) ) ) )t P t t t= = −( 4.6771( 2.8067(

f4
9
2 4( )t P= = − +( ) 9.2808( ) 7.9550( ) 0.79554 2t t t
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Therefore, for k = 5 in Example 7.1, L is:

L =

−0.7071 0.0000 0.7906 0.0000 0.7955
0.0000 1.2247 0.0000 2.8067 0.0000
0.0000 0.0000 2.3717 0.0000 7.9550
0.000

−
−

0 0.0000 0.0000 4.6771 0.0000
0.0000 0.0000 0.0000 0.0000 9.2808

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

and F L= M is:

F =

− −
−

0.7071 1.2247 1.5811 1.8704 2.1213
0.7071 0.9525 0.6441 0.0176 0.6205
0.7071 0.6804 0.0586 0.7573 0.7757

− −
− − −

0.7071 0.4082 0.5271 0.7623 0.0262
0.7071 0.1361 0.76

− −
− − 13 0.3054 0.6987

0.7071 0.1361 0.7613 0.3054 0.6987
0.70

− −
71 0.4082 0.5271 0.7623 0.0262

0.7071 0.6804 0.0586 0.
− −
− − 7573 0.7757

0.7071 0.9525 0.6441 0.0176 0.6205
0.7071 1.

−
−

2247 1.5811 1.8704 2.1213

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

[g.1]
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Appendix H: Computing the
Covariance Matrix of Additive
Genetic Effect of Marked QTL
(MQTL) when Paternal or
Maternal Origin of Marker Alleles
cannot be Determined and
Marker Information is Incomplete

Wang et al. (1995) generalized [8.4] to accommodate situations where the
paternal or maternal origin of marker alleles cannot be determined and
where marker genotypes of some individuals are unknown. The
covariance matrix, Gv, between additive effects of MQTL alleles was
derived by considering the covariance of alleles between individuals and
within individuals separately.

H.1 Covariance Between Individuals

Assume that s and d are parents of i, and j is not a direct descendant of i;
then [8.4] can be written as:

cov( (v v Q Qi
ki

j
kj

obs i
ki

j
kj

obs v, | ) | )M M= ≡P s 2 [h.1]

where ki and kj can either be 1 (paternal MTQL allele) or 2 (maternal
MQTL allele), Mobs is the marker genotype andP(Q Qi

ki
j
kj

obs≡ | )M is the
probability that Qi

ki is identical by descent (IBD) to Qj
kj , given Mobs. This

probability can be expressed as:

P Q Q Q Q Q Qi
ki

j
kj

obs i
ki

s s j
kj

obs( | ) , | )≡ = ← ≡M MP ( 1 1

+ ← ≡P Q Q Q Qi
ki

s s j
kj

obs( , | )2 2 M

+ ← ≡P Q Q Q Qi
ki

d d j
kj

obs( , | )1 1 M

+ ← ≡P Q Q Q Qi
ki

d d j
kj

obs( , | )2 2 M [h.2]

where, for instance, P Q Q Q Qi
ki

s s j
kj( )← ≡1 1, means that Qi

ki descended
from Qs

1 and Qs
1 was IBD to Qj

kj . The conditional sampling of Qi
ki from s or
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d is independent of the alleles of j being IBD to alleles in s or d, given that j
is not a direct descendant of i and marker genotypes of s and d are known.

Thus the probability in [h.2] can be computed recursively as:

P Q Q P Q Q P Q Qi
ki

j
kj

obs i
ki

s obs s j
kj

obs( | ) ( | ) ( | )≡ = ← ≡M M M1 1

+ ← ≡P Q Q P Q Qi
ki

s obs s j
kj

obs( | ) ( | )2 2M M

+ ← ≡P Q Q P Q Qi
ki

d obs d j
kj

obs( | ) ( | )1 1M M

+ ← ≡P Q Q P Q Qi
ki

d obs d j
kj

obs( | ) ( | )2 2M M [h.3]

where, in general, P Q Qi
ki

p
kp( )← is the conditional probability that allele

Qi
ki in progeny i descended from allele Qp

kp in parent p = s or d for ki,
kp = 1 or 2. This conditional probability is referred to as the probability of
descent for a QTL allele (PDQ). There are eight PDQs for each individual,
as Wang et al. (1995) showed, and these are given later as elements of the
matrix B in equation [h.6]. Each PDQ can be computed as:

P Q Q P M Mi
ki

p
kp

obs i
ki

p obs( | ) ( ) ( | )← = − ←M M1 1r

+ ←rP M Mi
ki

p obs( | )2 M [h.4]

for ki = 1 or 2 and p = s or d, where r = r when kp = 1 and r = −1 r when
kp = 2 and r is the recombination rate. In general, the probability
P M Mi

ki
p
kp

obs( | )← M in the above equation is referred to as the probabil-
ity of descent for a marker allele (PDM) and it defines the conditional prob-
ability that marker allele M i

ki in progeny i descended from marker allele
M p

kp , given the marker genotype and pedigree. There are eight PDMs for an
individual and these are given later as elements of the matrix S in equation
[h.7]. The computation of the PDMs is illustrated in the next section. The
PDQs and PDMs associated with unknown parents are undefined. For an
individual i, equation [h.4] can be written in matrix notation as:

Bi = SiR [h.5]

where:

B
M M M

i
i s obs i s obs i d obsP Q Q P Q Q P Q Q P

=
← ← ←( | ) ( | ) ( | ) (1 1 1 2 1 1 Q Q

P Q Q P Q Q P Q Q
i d obs

i s obs i s obs i

1 2

2 1 2 2 2

←
← ← ←

| )
( | ) ( | ) (

M
M M d obs obsP2| ) ( | )M MQ Qi d

1 2←
⎛

⎝
⎜

⎞

⎠
⎟

[h.6]

S
M M M

i
i s obs i s obs i d obsP M M P M M P M M P

=
← ← ←( | ) ( | ) ( | ) (1 1 1 2 1 1 M M

P M M P M M P M M
i d obs

i s obs i s obs i

1 2

2 1 2 2 2
←

← ← ←
| )

( | ) ( | ) (
M

M M d obs i d obsP M M2 1 2| ) ( | )M M←
⎛

⎝
⎜

⎞

⎠
⎟

[h.7]
and:

R =

−
−

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 0 0
1 0 0

0 0 1
0 0 1

r r

r r

r r

r r

[h.8]
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Thus, given the PDMs and R, the PDQs can be calculated.

H.1.1 Computing PDMs

Given that Gi, Gs and Gd are the marker genotypes of an individual i and
its parents s and d, then P M M P M Mi

ki
p
kp

obs i
ki

p
kp

s d i( | ) ( | , )← = ←M G G ,G
can be computed as:

P M M P M M Pi
ki

p
kp

s d i i
ki

p
kp

i s d i( | , ) ( , | )/ ( |← = ←G G ,G G G ,G G Gs d, )G [h.9]

The numerator and denominator of [h.9] can be calculated using Mende-
lian principles. For instance, if G M M A A G M M A As s s d d d= = = =1 2

1 1
1 2

1 2,
and G M M A Ai i i= =1 2

1 2, then P G G Gi s d( | , ) = 1
2, as two of the four poss-

ible progeny genotypes are of type A1A2 and:

P M M G G Gi s i s d( , | , )1 1 1
4← =

This is so because the probability that M i
1 descended from the sire marker

genotype is 0.5 or from the dam’s marker genotype is 0.5. Since these two
events are independent:

P M M G G Gi s i s d( , | , )1 1← = =0.5(0.5) 0.25

Thus, using [h.9]:

P M M G G Gi s s d i( | , , )1 1← = =0.25 /0.5 0.5

Following similar arguments:

P M M G G G M M G G Gi d s d i i d i s( | , , ) , | ,1 1 2 2← = = ←0.5/0.5 1 as (P d ) = 0.5

The eight PDMs for each individual i are stored in Si. The elements of
the matrix Si in equation [h.7] for the above example and other examples
given by Wang et al. (1995) are:

s d i Si (1,1) Si (1,2) Si (1,3) Si (1,4) Si (2,1) Si (2,2) Si (2,3) Si (2,4)

A1A1 A1A2 A1A2
1
2

1
2

0 0 0 0 0 0

A1A2 A1A2 A1A2
1
2

0 1
2

0 0 1
2

0 1
2

A1A1 A1A1 A1A1
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

H.2 Covariance Within Individuals

For an individual i with parents s and d, the conditional covariance
between the additive effects v i

1 and v i
2 of MQTL alleles Qi

1 and Qi
2, given

Mobs, can be written as:

cov( , | ) ( | )v v P Q Q fi i obs i i obs v i v
1 2 1 2 2 2M M= ≡ =s s [h.10]

where f P Qi i obs= ≡( | )1 Qi
2 M is the conditional inbreeding coefficient of

individual i for the MQTL. It is the probability that, given Mobs, the two
homologous alleles at the MQTL in individual i are identical by descent.
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The two homologous alleles at the MQTL, Qi
1 and Qi

2, in individual i,
descended from one of the following parental pairs: ( , )Q Qs d

1 1 , ( , )Q Qs d
1 2 ,

( , )Q Qs d
2 1 or ( , )Q Qs d

2 2 . Assume that Tks,kd denotes the event that the pair of
alleles in i descended from the parental pair ( , )Q Qs

ks
d
kd for ks, kd = 1 or 2,

then fi can be written (Wang et al., 1995) as:

f P Q Q P Ti s
ks

kdks
d
kd

obs kskd obs= ≡
==

∑∑ ( | ) ( | )
1

2

1

2
M M [h.11]

As Wang et al. (1995) showed, the P Tks kd obs( | ), M in the above equation
can be expressed in terms of PDQs as:

P T P Q Q P Q Q Pks kd obs i s
ks

obs i d
kd

obs( | ) ( | ) ( | ) / [, M M M= ← ←1 2 ( | )Q Qi s obs
1 1← M

+ ←P Q Qi s obs( | )]1 2 M

+ ← ←P Q Q P Q Qi d
kd

obs i d
ks

obs( | ) ( | )1 2M M

/ [ ( | ) ( | )]P Q Q P Q Qi d obs i d obs
1 1 1 2← + ←M M [h.12]

For example, with ks = 1 and kd = 2

P T B B B B Bobs i i i i i( | )12 M = +(1,1) (2,4)/ (1,1) (1,2) (1,4)B i i iB(2,1) (1,3) (1,4)/ B

where Bi(l,k) are elements of Bi in [h.5]. If one of the denominators in
[h.12] is zero, then the entire corresponding term is set to zero.

H.3 Constructing the Matrix Gv

Using equations [h.5] and [h.11], the matrix Gv with elements g(i,j) can be
constructed recursively as:

g j B g j B g ji i s i s( , ) ( , ) ( , )1 1 2= +(1,1) (1,2)
+ +B g j B g ji d i d(1,3) (1,4)( , ) ( , )1 2 [h.13]

g j B g j B g ji i s i s( , ) ( , ) ( , )2 1 2= +(2,1) (2,2)
+ +B g j B g ji d i d(2,3) (2,4)( , ) ( , )1 2 [h.14]

for j = 1, ..., i
1 – 1, where Bi(l,k) are defined as in [h.6], s and d are the sire

and dam of animal i and g( i i
1 2, ) = fi is defined in equation [h.11].

H.3.1 An illustration

Using the pedigree in Example 8.1, with the assumed genotypes in the
table below, the calculation of Gv, given that the paternal or maternal ori-
gin of marker alleles is undetermined, is illustrated. It is also assumed
that marker r = 0.1 and sv

2 = 1.

Calf Sire Dam Marker genotype

1 – – A1A1

2 – – A2A2

3 1 2 A1A2

4 1 3 A1A2
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5 4 3 A1A2

First, calculate the Si in [h.7] for animals with parents identified. The
matrices Si, for i = 3, 5, are shown below:

S3

1
2

1
2

1
2

1
2

0 0
0 0

=
⎛

⎝
⎜

⎞

⎠
⎟ , S S4

1
2

1
2 5

1
2

1
2

1
2

1
2

0 0
0 0 0 1

0 0
0 0

=
⎛
⎝
⎜

⎞
⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟and

Using equation [h.5], the corresponding Bi, for i = 3, 5, are:

B3

1
2

1
2

1
2

1
2

0 0
0 0

=
⎛

⎝
⎜

⎞

⎠
⎟ , B4

1
2

1
2=

⎛
⎝
⎜

⎞
⎠
⎟

0 0
0 0 0.1 0.9

and

B5 = ⎛
⎝
⎜

⎞
⎠
⎟

0.45 0.05 0.45 0.05
0.05 0.45 0.05 0.45

Using equations [h.13] and [h.14], the matrix Gv for the example pedigree
is:

Gv =

1.000 0.000 0.000 0.000 0.500 0.000 0.500 0.050 0.453 0.073
0.000 1.000 0.000 0.000 0.500 0.000 0.500 0.050 0.453 0.073
0.000 0.000 1.000 0.000 0.000 0.500 0.000 0.450 0.048 0.428
0.000 0.000 0.000 1.000 0.000 0.500 0.000 0.450 0.048 0.428
0.500 0.500 0.000 0.000 1.000 0.000 0.500 0.100 0.680 0.120
0.000 0.000 0.500 0.500 0.000 1.000 0.000 0.900 0.095 0.855
0.500 0.500 0.000 0.000 0.500 0.000 1.000 0.050 0.678 0.098
0.050 0.050 0.450 0.450 0.100 0.900 0.050 1.000 0.163 0.863
0.453 0.453 0.048 0.048 0.680 0.095 0.678 0.163 1.000 0.167
0.073 0.073 0.428 0.428 0.120 0.855 0.098 0.863 0.167 1.000

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The calculation for the first three animals can be illustrated as
follows. For the first two animals, parents are unknown; therefore
the first four rows of Gv have ones in their diagonal elements. For
animal 3:

g g g g g( ) ( ) ( ) (3
1

1
1

1
1

1
1

2
1

1
1= + + +( / ) ( / ) ( ) ( ) ( )1 2 1 2 0 01

2
1
1

2
2

1
1) 0.5=

g g g g g( ) ( ) ( ) (3
1

1
2

1
2

1
2

2
1

1
2= + + +( / ) ( ) ( / ) ( ) ( )1 2 1 2 0 01

1
1
2

2
2

1
2) 0.5=

g g g g g( ) ( ) ( ) (3
1

1
2

2
1

2
1

2
1

2
1

1
1

2
11 2 1 2 0 0= + + +( / ) ( ) ( / ) ( ) ( ) 2

2
2
1) = 0

g g g g g( ) ( ) ( ) ( )3
1

1
1

2
2

1
2

2
1

2
2

2
2

2
21 2 1 2 0 0= + + +( / ) ( / ) ( ) ( ) ( )2

2
2
2 = 0

g g g g g( ) (0) ( ) (0) ( ) ( ) (3
2

1
1

1
1

1
1

1
2

2
1= + + +1

1
1
11 2 1 2( / ) ( / ) 2

2 ) 01
1 =

g g g g g( ) (0) ( ) (0) ( ) ( , )3
2

1
1

1
2

1
2

2
1

1
2

1
2

1
2 1 2 1 2= + + +( / ) ( / ) ( ) 02

2
1
2 =
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g g g g g( ) (0) ( ) (0) ( ) (1/2) ( ) (1/2) (3
2

1
1

1
2

2
1

2
1

2
1

2
1

2
1= + + + 2

2
2
1) 0.5=

g g g g g( ) (0) ( ) (0) ( ) (1/2) ( ) (3
2

2
2

1
1

2
2

1
2

2
2

2
1= + + +2

2 1 2( / ) 2
2 ) 0.52

2 =

Since the parents of animal 3 are unrelated, g ( )3
1

3
2 = 1.

The calculation of fi for animal 4 is illustrated as the parents are
related. From [h.11], to compute f4, P Q Qk k

obs( | )1
1

3
3≡ M and

P Tk k obs( | ),1 3 M for k1, k3 = 1 or 2 are needed. The probabilities
P Q Qk k

obs( | )1
1

3
3≡ M have already been calculated earlier in computing Gv

as:
P Q Q gobs( | ) (1

1
3
1

1
1≡ =M 3

1 ) = 0.5

P Q Q gobs( | )1
1

3
2

3
2≡ =M ( ) = 01

1

P Q Q gobs( | )1
2

3
1≡ =M ( ) = 0.51

2
3
1

P Q Q gobs( | )1
2

3
2≡ =M ( ) = 01

2
3
2

Probabilities P Tk k obs( | ),1 3 M can be computed, using [h.11], as:

P T B B B Bobs( | ) / (11 4 4 4 4M = +(1,1) (2,3) 1,1) (1,2)

+ +B B B4 4 4(1,3) (2,1)/ (1,3) (1,4)4B

= 0.5 (0.1)/(0.5 + 0.5) + 0 = 0.05
Similarly:

P T P T P Tobs obs obs( | ) , ( | ) ( | )12 21 22M M M= = =0.45 0.05 and 0.45

Therefore:

f P Q Q P Tk

kk

k
obs k k obs4 1

1

3 1

2

1 1

2

3
3

1 3= ≡ =
==

∑∑ ( | ) ( | )M M 0.05

The extension of the above algorithm for computing Gv when QTL is
bracketed by two markers is given by Pong-Wong et al. (2001).

H.4 Computing Inverse of Gv

Using the same principles discussed in Chapter 8, Section 8.4, the inverse
of the Gv matrix can be calculated as:

G
G 0
0 0

Wv i
v i

i,
,− −

−
=

⎛
⎝
⎜

⎞
⎠
⎟ +1 1

1
[h.15]

where Wi is a matrix containing the contributions of individual i to Gv i,
−1

and is:

W
B D B B D

D B D
i

i i i

i i i

=
′ − ′

− ′
⎛
⎝
⎜

⎞
⎠
⎟

− −

− −

1 1

1 1
i [h.16]

where D C B C Bi i i sd i= − ′ , with Csd being the 4 by 4 conditional gametic
relationship matrix for parents of i, s and d, the elements of which are in
G Bv i i, ,−1 is as defined in [h.6] and Ci is:
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C i
i

i

f

f
= ⎛

⎝
⎜

⎞
⎠
⎟

1
1

Thus, when fi = fs = fd = 0, then:

D I B Bi i i= − ′2 [h.17]

The algorithm for computing Gv
−1 therefore is as follows:

Set Gv
−1 to a null matrix. For individual i, for i = 1,...,n:

1. If both parents are unknown, add 1 to positions ( )i i
1 1 and ( )i i

2 2 of Gv
−1.

2. If at least one parent is known, then:
(a) compute Bi using [h.5];
(b) compute Di as defined in [h.16] if there is inbreeding, or [h.17] if

there is no inbreeding;
(c) compute Wi using [h.16] and add the elements to the relevant

positions in Gv
−1.

For the example pedigree, Gv
−1 is:

Gv
− =

− −

1

2.000 1.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000
1.000 2.000 0.000 0.000 1.000 0.000 1.000 0.000 0− − .000 0.000
0.000 0.000 1.500 0.500 0.000 1.000 0.000 0.000− 0.000 0.000
0.000 0.000 0.500 1.500 0.000 1.000 0.000 0.00− 0 0.000 0.000
1.000 1.000 0.000 0.000 2.617 0.707 0.561 0− − − .349 1.210 0.325
0.000 0.000 1.000 1.000 0.707 7.456 0.

− −
− − 207 4.044 0.226 2.098

1.000 1.000 0.000 0.000 0.561 0.
− − −

− − 207 2.561 0.207 1.210 0.325
0.000 0.000 0.000 0.000 0.34

− −
− 9 4.044 0.207 6.511 0.226 2.098

0.000 0.000 0.000 0.000
− − −

−1.210 0.226 1.210 0.226 2.667 0.207
0.000 0.000 0.000 0.

− − −
000 0.325 2.098 0.325 2.098 0.207 4.640− − − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

H.5 Incomplete Marker Data

When marker genotypes of parents are unknown, Wang et al. (1995)
showed that equation [h.3] does not hold; therefore, the algorithm in Sec-
tion H.3 for calculating Gv cannot be applied. Given incomplete marker
information, the conditional gametic relationship matrix, G Mv obs| can be
computed as:

G G MM Mv v obsobs
P| | , ( | )=

∈
∑ w

w

w
obs

W

[h.18]

where W is the set of all possible marker genotype configurations for indi-
viduals with unknown genotypes, G Mv| ,w obs

is the conditional gametic rela-
tionship matrix, given marker genotypes w for individuals with unknown
genotypes and Mobs for individuals with known genotypes, P obs( | )w M
being the conditional probability of individuals with unknown genotypes
having marker genotypes w, given Mobs. Although P obs( | )w M in [h.18] can
be computed efficiently (Elston and Stewart, 1971), the use of [h.18] is not
efficient when a large number of individuals have unknown genotypes.
Wang et al. (1995) presented an approximation in which the PDMs (in
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equation [h.6]) for individual i having parents s and d with unknown
marker genotypes can be computed as:

P M M P M M G G G P G G Gi s obs i s s d i s d i obs( | ( | , , ) ( , , |1 1 1 1← = ←M M) )
GGG ids

∑∑∑
where each summation is over all possible genotypes at the marker locus.
If Gs, Gd or Gi is not missing, then the corresponding summation is
dropped. However, with a large number of individuals with a missing
marker genotype, computing P G G Gs d i obs( , , | )M can take a long time, but
it can be approximated by conditioning only on marker information of
‘close’ relatives of i, s and d, such as the parents, sibs or offspring.

In practice, simulation techniques, usually Markov chain Monte
Carlo (MCMC) methods (Chapter 12), are employed to calculate
P obs( | )w M . One such method is the ‘single site’ approach (Sheehan, 1990),
which involves updating the individual’s genotype, conditioned upon the
individual’s phenotype and current genotypes of the parents, mates and
progeny. However, this suffers from poor ‘mixing’ qualities for a complex
pedigree and irreducibility of the chains can only be ensured for
biallelic loci. More complex sampling techniques have been presented
that address the problem of the irreducibility of the chain (Lin et al., 1994;
Lund and Jensen, 1998), but this cannot always be guaranteed.

Thompson (1994) and Thompson and Heath (1999) presented an
alternative sampling strategy based on utilizing segregation indicators. It
is based on the principle that segregation events (separation of alleles at a
locus during meiosis) determine the inheritance of genetic materials from
parent to progeny. The segregation indicators give possible allelic path-
ways through the pedigree. Using their notation, the segregation indicator
(Sij) equals 0 if inherited at the ith segregation and the jth locus is the par-
ent’s maternal allele. Otherwise, Sij = 1 if the inherited allele at segrega-
tion i at locus j is the parent’s paternal allele. The set of segregation
indicators for the n segregations in the pedigree and the m loci, where
these loci may be marker loci and/or QTL, is represented by

{ }s = = =S i n j mij , ,1, ..., 1, ..., . The segregation indicators can be used to
estimate IBD probabilities between any pair of individuals in the pedigree
from a large number of s with probability P obs( )s|M . Using the above
principles, a multiple-site segregation sampler was developed by Thomp-
son and Heath (1999). This is implemented in the QTL mapping software,
LOKI. The user supplies LOKI with the pedigree structure, marker geno-
types, marker positions and MQTL positions for which the IBD matrices
are to be calculated.
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Index

Accuracy
animal model evaluations 50–52,

307–309
multivariate evaluations 90
pedigree information 9
prediction from correlated trait

12
progeny records 8
random regression model 152–154,

309–310
repeated records 5
selection index 14–15
single record 2

Analysis of quantitative and binary
traits, jointly 224–233

Analysis of variance 235, 237, 238
Animal model

approximate reliabilities
for 307–309

best linear unbiased
prediction 42–52

with dominance effects
193–206

with groups 62–69
multivariate 83–92
with random environmental

effects 71–77
sire model 52–55

Average information 242

Back-solving for non-parents 61
with genetic marker

information 178
for maternal traits 131

Base animal 46, 62
Best linear prediction see Selection

index
Best linear unbiased prediction

definition and properties 39
derivation 303–305
for maternal traits 121–127
multivariate model 83–92
non-additive effects 193–209
theoretical background 40–42
univariate animal model 42–52

Borderless evaluations 119
BREEDPLAN 40
Burn-in period 248, 251

Canonical transformation 92–95,
311–312

with missing records 312–314
Categorical traits 211
Cholesky decomposition 98–101, 258,

316
Coancestry 25
Coefficient of relationship see

Coancestry
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Common environmental effects 77–81
Conditional posterior

distribution 247, 249–251,
255–257

Contingency table 214, 224
Convergence criterion 260–261, 288
Correlated response 12
Covariance function 136, 154–157

equivalence to random
regression 161–162

Covariance matrix for MQTL effects
definition and calculation 164–166,

167–169
incomplete marker

information 325, 331–332
inverse of 169–173
origin of paternal and maternal

marker alleles
unknown 325–328

Daughter yield deviation
definition 48–50
multivariate model 91–92, 104–105
random regression model 152
univariate model 50, 77

Degrees of freedom 236, 237, 238, 239
Deregression of breeding values 109

computation 317–319
Design matrices

equal, with missing records 95
equal, with no missing records 84

Direct genetic effect 121
Dominance 2, 121

animal model with dominance
effects 194–198

rapid inverse of relationship
matrix 198–203

relationship matrix 191–194

Effective daughter contribution 111
EM algorithm 241
Environmental effects

common environmental
effects 77–81

permanent environmental effects 4,
7, 76, 121

random environmental
effects 71–77

temporary environmental effects 4

Epistasis 2, 121, 206
inverse of relationship

matrix 206–209

Fixed regression model 136–141
partitioning evaluations 141

Functions of the normal
distribution 212–213

Gauss–Seidel iteration 263–264
Genetic marker information 163

in prediction of breeding
value 173–191

animal model 173–174
direct prediction of additive

genetic merit 19–81
predicting total additive

genetic merit 179–181
with QTL bracketed by two

markers 184–191
in selection index 23

Genotype-by-environment
interaction 109, 118

Gibbs sampling 247
inferences from Gibbs

sampler 251–252
multivariate animal model 254
univariate animal model

248–251
Groups, animal model 62–69

Henderson’s method 3 238

Identical by descent (IBD) 164, 325
Inbreeding

conditional inbreeding
coefficient 327

fast algorithm
inbreeding coefficient 25, 28
and inverse of relationship matrix

Indirect genetic effect 121
Infinitesimal model 2
Intra-class correlation 7

Jacobi iteration 260–261
second-order Jacobi 261
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Joint analysis of quantitative and
binary traits 224–233

Joint distribution 249

Kronecker product 293

Lactation curve 140–141, 148
Least-square equations (LSE) 44
Legendre polynomials 137

computation matrix of 321–323
Liability 211
Linear model, solving 259–288
Log-likelihood 240
LOKI 332
Longitudinal data 136

Marker-assisted selection 163
Markov Chain Monte Carlo

(MCMC) 247, 332
Maternal traits 121

animal model with 122–127
multivariate model with 133–134
reduced animal model 127–133

Matrix
addition and subtraction 292
definition 289–290
diagonal 290
direct product 293
eigenvalues 295–296
eigenvectors 295–296
generalized inverse 295
inverse 293
multiplication 292
rank 294
square 290
symmetric 291
transpose of 291
triangular 290

Mendelian sampling 2, 27, 47, 56
Meuwissen and Luo

algorithm 297–300
modified 300–301

Mixed model equations (MME)
41, 43

Mothering ability see Maternal traits
Multivariate best linear unbiased

prediction 83–92
canonical transformation 92–95

Cholesky transformation 98–101
different traits on relatives 106
equal design matrices

missing records 95
multi-trait across country

evaluations 109–111
no environmental

covariance 105
no missing records 84

Multi-trait across-country evaluations
(MACE) 109–114

limitations of MACE 118–119
partitioning MACE

evaluations 114–118

Non-additive animal models
193–209

Non-linear model 211
Numerator relationship matrix 25–26

accounting for inbreeding 32–33
decomposing 27
with groups 64
ignoring inbreeding 29–30
inverse 28
for sires and maternal

grandsires 34, 110

Overall economic indices 20

Permanent environmental effect 4, 72,
76, 121

PEST 40
PEV see Prediction error variance
Phantom parents 62, 64, 67
Preconditioned conjugate gradient

algorithm (PCG) 283–285
Prediction error variance 51, 240
Prior distributions 247, 248–249,

254–255
Probability of descent of a marker

allele (PDM) 326–327
Probability of descent of a QTL allele

(PDQ) 326
Probable producing ability 76
Progeny contribution 46

derivation 305–306
Progeny yield deviation see Daughter

yield deviation
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Quantitative trait loci (QTL) 163, 184

Random regression model 136,
143–148

equivalence to covariance
function 161–162

for maternal traits 154
partitioning evaluations 148
reliabilities, approximate 309–310

RAM see Reduced animal model
Recombination rate 165
Reduced animal model 55–58,

127–133
with genetic marker

information 174–179, 191
Relatives

genetic covariance between 25–37
Relaxation factor 261
Reliability see Accuracy
REML see Restricted maximum

likelihood
Repeatability model 71–73, 135
Response to selection

pedigree information 10
progeny records 8
repeated records 6
single record 3

Restricted maximum likelihood 42,
240

Segregation indicators 332
Selection index 12–14, 39, 41

aggregate genotype 18–20
for correlated traits 15–16
means of records 17–18
overall economic indices 20–21
phenotype and genetic marker

information 23
properties 13
single records 16–17

Sire model 52–55
Standard error of prediction 51

Threshold model 211, 212–215
Transmitting ability

estimated 3
predicted 2, 3

Underlying continuous trait 211

Variance component estimation
animal model 240–242
extended model 237–240
univariate sire model 235

Variance of estimated breeding
value 4

Yield deviation 46, 76
fixed regression model 141
multivariate model 88
random regression model 149
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